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Abstract

We show that adding noise before publishing data effectively screens p-hacked find-
ings: spurious explanations produced by fitting many statistical models (data mining).
Noise creates “baits” that affect two types of researchers differently. Uninformed p-
hackers, who are fully ignorant of the true mechanism and engage in data mining, often
fall for baits. Informed researchers, who start with an ex-ante hypothesis, are mini-
mally affected. We show that as the number of observations grows large, dissemination
noise asymptotically achieves optimal screening. In a tractable special case where the
informed researchers’ theory can identify the true causal mechanism with very little
data, we characterize the optimal level of dissemination noise and highlight the rele-
vant trade-offs. Dissemination noise is a tool that statistical agencies currently use to
protect privacy. We argue this existing practice can be repurposed to screen p-hackers
and thus improve research credibility.
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1 Introduction

In the past 15 years, academics have become increasingly concerned with the harms of p-
hacking: researchers’ degrees of freedom that lead to spurious empirical findings. For the
observational studies that are common in economics and other social sciences, p-hacking
often takes the form of multiple testing: attempting many regression specifications on the
same data with different explanatory variables, without an ex-ante hypothesis, and then
selectively reporting the results that appear statistically significant. Such p-hacked results
can lead to misguided and harmful policies, based on a mistaken understanding of the causal
relationships between different variables. Recent developments in data and technology have
also made p-hacking easier: today’s rich datasets often contain a large number of covariates
that can be potentially correlated with a given outcome of interest, while powerful computers
enable faster and easier specification-searching.

In this paper, we propose to use dissemination noise to address and mitigate the negative
effects of p-hacking. Dissemination noise is pure white noise that is intentionally added to
raw data before the dataset is made public. Statistical agencies, such as the US Census
Bureau, already use dissemination noise to protect respondents’ privacy. Our paper suggests
that dissemination noise may be repurposed to screen out p-hackers. Noise can limit the
ability of p-hackers to “game” standards of evidence by presenting spurious but statistically
significant results as genuine causal mechanisms. We show that the right amount of noise
can serve as an impediment to p-hacking, while minimally impacting honest researchers who
use data to test an ex-ante hypothesis.

1.1 p-Hacking

Spurious results in many areas of science have been ascribed to the ability of researchers to,
consciously or not, vary procedures and models to achieve statistically significant results.
The reproducibility crisis in psychology has been blamed to a large extent on p-hacking
(Simmons, Nelson, and Simonsohn, 2011; Simonsohn, Nelson, and Simmons, 2014; Open
Science Collaboration, 2015). Camerer et al. (2016) evaluate experiments in economics and
find a significant number of experiments that do not replicate.!

Most empirical work in economics and other social sciences are observational studies
that use existing field data, not experiments that produce new data. Observational studies
lead to a different sort of challenge for research credibility, where p-hacking stems mostly
from discretion in choosing explanatory variables and econometric specifications. In exper-
imental work, one remedy for p-hacking is pre-registration: researchers must describe their
methods and procedures before data is collected. But this solution is not applicable for ob-
servational studies, because researchers may have already accessed the public dataset before
pre-registering.

1See also Camerer et al. (2018) and Altmejd et al. (2019). Imai, Zemlianova, Kotecha, and Camerer
(2017) find evidence against p-hacking in experimental economics.



1.2 Dissemination Noise

Dissemination noise is currently used by major statistical agencies to protect people’s privacy.
The US Census Bureau, for instance, only disseminates a noisy version of the data from the
2020 Census. The practice is not new. Previously, the Bureau has released a tool called
“On the map” whose underlying data was infused with noise. Even earlier technologies
for preserving respondent confidentiality like swapping data and imputing data can also be
interpreted as noisy data releases. The contribution of our paper is to propose a new use for
dissemination noise.

1.3 Setup and Key Results

We consider a society that wants to learn the true cause behind an outcome variable. Re-
searchers differ in their expertise: some are mavens whose domain knowledge narrows down
the true cause to a small set of candidates, and others are hackers with no prior information
about the true cause. Researchers derive utility both from reporting the true cause and from
influencing policy decisions. So uninformed hackers have an incentive to “game” the system
by using the data to fish for a covariate that would convince the policymaker.

We show that dissemination noise can help screen researcher expertise by introducing
spurious correlations that can be proven to be spurious. These noise-induced correlations
act like baits for p-hackers. But at the same time, they also make the data less useful for
the informed mavens who use the data to test a specific ex-ante hypothesis.

We explore this trade-off in our model. We show that as the number of observations grows
large, dissemination noise asymptotically achieves optimal screening. In a tractable special
case where the informed researchers’ theory can identify the true cause with very little data,
we characterize the optimal level of dissemination noise and derive comparative statics.
The key intuition is that a small amount of noise hurts hackers more than mavens. All
researchers act strategically to maximize their expected payoffs, but their optimal behavior
differ. Mavens only entertain a small number of hypotheses, so a small amount of noise
does not greatly affect their chances of detecting the truth. Hackers, by contrast, rationally
try out a very large number of covariates because they have no private information about
the true cause. The hackers’ data mining amplifies the effect of even a small amount of
noise, making them more likely to fall for a bait and get screened out. So, adding noise
grants an extra informational advantage to the mavens, whose prior knowledge pinpoints a
few candidate covariates. The hackers get screened out precisely because they (rationally)
p-hack out of complete ignorance about the true cause.

We focus on a setting where the types of researchers primarily differ in terms of their
expertise, not their incentives or biases. While our main results do allow the mavens and the
hackers to assign different weights to correctly reporting the true cause versus influencing
policy-making, our results are mainly driven by the fact that only the mavens have private
information about the true cause. In terms of the classification of different kinds of p-hacking
practices (see, for example, MacCoun and Perlmutter (2017)), we focus on the problem of
deterring capitalization on chance, where the researcher has no preconceived story but fishes
around for anything that appears statistically significant in the data. We are not studying
confirmation bias, where a researcher with a preconceived story looks for evidence that



supports the story while discarding or downplaying evidence to the contrary.

We use a stylized model to represent researchers analyzing existing observational data
for associations. Our intention is to explore a new channel for screening researcher expertise
in a simple and tractable setup. Of course, the practical usefulness of dissemination noise
will need to be evaluated in more specific and realistic domains. Also, our focus is on simple
correlational studies that use existing data: other research designs such as experiments that
acquire new data or sophisticated econometric methods that exploit special structure of the
data to credibly infer causation are outside of the scope of this work.

1.4 Alternative Solutions to p-Hacking

As already mentioned, the most common proposal to remedy p-hacking is pre-registration.
While it is a very good idea in many scientific areas, it is of limited use for observational
studies, which are ubiquitous in the social sciences. Not only does it preclude useful ex-
ploratory work, it is also impossible to audit or enforce because publicly available data can
be privately accessed by a researcher before pre-registration.

A second solution is to change statistical conventions and make p-hacking more difficult.
An extreme example is banning the use of statistical inference altogether (Woolston, 2015).
A less drastic idea is contained in Benjamin et al. (2018), which proposes to lower the p-
value threshold for statistical significance by an order of magnitude — from 5% to 0.5%. Of
course this makes p-hacking harder, but a p-hacker armed with a sufficiently “wide” dataset
and cheap enough computation power can discover spurious correlations that satisfy any
significance threshold. We address this idea within our model and argue that our proposed
use of dissemination noise is largely complementary to requiring more demanding statistical
significance.

An idea related to our proposal is simply to reserve data for out-of-sample testing. Typ-
ically, the observations are partitioned into two portions. One portion is released publicly,
and the rest is a “hold-out” dataset reserved for out-of-sample testing. We instead focus on
a model of noise where each observation of each covariate is independently perturbed, which
more closely resembles the kind of dissemination noise currently in use for privacy purposes.
Our central message is that the current implementation of noise can be repurposed to screen
out p-hacking. In addition, the kind of dissemination noise we study may be more applicable
for datasets where the observations are not generated from an i.i.d. process, and thus it is
less reasonable to designate some observations as a hold-out dataset (e.g., observations are
different days in a time series).

The out-of-sample approach is the focus of Dwork et al. (2015a). We differ in that we
consider a world with two kinds of researchers and the dissemination noise here serves a
screening role to separate the two types who act strategically to maximize their expected
payoffs.

1.5 Related Literature

In economics, there is a recent strand of literature that seeks to understand the incentives
and trade-offs behind p-hacking. Henry (2009); Felgenhauer and Schulte (2014); Felgenhauer
and Loerke (2017); Di Tillio, Ottaviani, and Sgrensen (2021); Henry and Ottaviani (2019);



McCloskey and Michaillat (2024) all study different games between a researcher (an agent)
and a receiver (a principal). The agent has access to some p-hacking technology, which takes
various forms such as repeatedly taking private samples and then selectively reporting a
subset of favorable results to the principal, or sampling publicly but strategically stopping
when ahead. These papers seek to better understand the equilibrium interaction between p-
hacking agents and their principals, and study how such interactions are affected by variations
in the hacking technology.

This literature differs from our work in two ways. First, they consider the case where
hacking is costly. On this dimension, these papers about p-hacking are related to the broader
literature on “gaming,” where agents can undertake costly effort to improve an observable
signal (here, the p-value) beyond its natural level (e.g., Frankel and Kartik (2019)). We
instead consider hackers who incur zero cost from p-hacking, motivated by our focus on
researchers who data mine an existing dataset (which is essentially free with powerful com-
puters). Absent any interventions, equilibria with zero hacking or gaming cost would be
uninteresting. Our focus is instead on a specific intervention, dissemination noise, that can
help screen out the p-hackers even though they face no hacking costs. The second difference
is that these papers do not consider the problem of expertise screening. In our world, the
principal’s main problem is to provide sufficiently informative data to agents who have ex-
pertise while distorting the data enough to mislead another type of agent who try to make
up for their lack of expertise with p-hacking.

Di Tillio, Ottaviani, and Sgrensen (2017) also study a game between a p-hacker and a
principal, but give the agent some private information and the ability to select an area to
do research in. This is a mechanism for hacking that is outside of the scope of our paper.

2 Model and Asymptotically Optimal Screening Using
Dissemination Noise

2.1 The Baseline Model

We propose a model that captures the essence of how dissemination noise allows for expertise
screening in an environment where non-expert agents can p-hack, while keeping the model
tractable enough to allow for analytic solutions.

2.1.1 The Raw Dataset

Consider an environment where each unit of observation is associated with an outcome Y
and a set A of potential causal covariates (X?),c4. The outcome and each covariate is binary.
Suppose the dataset is “wide,” so the set of potential causes for the outcome is large relative
to the number of observations. In fact, we assume a continuum of covariates; so A = [0, 1].
For instance, the covariates may indicate the presence or absence of different SNPs in a
person’s genetic sequence, while the outcome refers to the presence or absence of a certain
disease.

There is one covariate a* € A, the true cause, with P[X* = Y] = ¢ for some ¢ € (1/2,1].
So the true cause is positively correlated with the outcome, but it may not be perfectly



correlated. For instance, a* is the one SNP that causes the disease in question. There is
also a red herring covariate a” € A that is independent of Y. The red herring represents a
theoretically plausible mechanism for the outcome Y that can only be disproved with data.
For instance, a” might be a SNP that seems as likely to cause the disease as a* based on a
biological theory about the roles of different SNPs.

Nature draws the true cause a* and the red herring a”, independently and uniformly from
A. Then Nature generates the raw dataset (Y, (X3)acjo,1]) for observations 1 < n < N. First,
the values of the true cause in the N observations (X2 );<,<x are generated independently,
each equally likely to be 0 or 1. Then, each Y, is generated to match X¢ with probability
¢ for 1 < n < N, independently across n. Finally, covariates X¢ for a # a*, 1 < n < N
are generated, each equally likely to be 0 or 1, independent of each other and of all other
random variables. (So there is a continuum of independent Bernoulli random variables.)
Equivalently, once a* and a” are drawn, we have fixed a joint distribution between Y and
the covariates (X%),c4, and the raw dataset consists of N independent draws from this joint
distribution. For instance, this may represent a dataset that shows the complete genetic
sequences of N individuals and whether each person suffers from the disease.

2.1.2 Players and Their Incentives

There are three players in the model: a principal, an agent, and a policymaker. The principal
owns the raw dataset, but lacks the ability to analyze the data and cannot influence policy-
making norms. The principal disseminates a noisy version of the dataset, which we describe
below. The agent uses the disseminated data to propose a covariate, a. Finally, a policymaker
evaluates the agent’s proposal on the raw dataset using an exogenous test. We think of the
agent as proposing an intervention: if this proposal passes, the policymaker will implement
a policy that changes X@ in order to affect the value of Y. In the background, we implicitly
assume that the principal grants the policymaker access to the raw data to conduct the test.
(In Section 5, we model the principal periodically noisy versions of the raw data for these
tests. Such data releases will diminish the principal’s ability to screen out p-hackers in the
future.)

The policymaker’s role is mechanical, and restricted to deciding whether the agent’s
proposal passes an exogenous test. We say that the proposal a passes if the covariate X
equals the outcome Y in M = |v- N| out of N observations, and that it fails otherwise.
The parameter 7 is an exogenous passing threshold with 1/2 < v < 1. The policymaker will
adopt a policy proposal if and only if it passes the test on the raw data. Passing the test
does not require a to be the true cause of Y, for we could have some covariate a # a* where
Y, = X for at least M observations by random chance.?

The agent is either a maven (with probability 1 — h) or a hacker (with probability h).
Mavens and hackers differ in their expertise. A maven knows that the true cause is either a*
or a”, and assigns them equal probabilities, but a hacker is ignorant about the realizations
of a* and a". The idea is that a maven uses domain knowledge (e.g., biological theory about
the disease Y') to narrow down the true cause to the set {a*,a"}. A hacker, by contrast, is
completely uninformed about the mechanism causing Y.

2There is no reward in our model for disproving a hypothesis.



The agent’s payoffs reflect both a desire for reporting the true cause and a desire for
policy impact. If a type 6 agent proposes a when the true cause is a*, then his payoff is

We - ]-{a:a*} + (1 - w@) : ]-{at least |v-N| observations n have Y,=X2}-

Here we interpret 1y,—,-} as the effect of proposing a on the agent’s long-run reputation
when the true cause a* of the outcome Y eventually becomes known. The other summand
models the agent’s gain from proposing a policy that passes the policymaker’s test and gets
implemented. The relative weight wy € [0, 1] on these two components may differ for the
two types of agent. Our main results in this section are valid for any values of wpyaven and
Whacker 10 [0, 1], but some later results in Section 3 will require restrictions on wyayen-

The principal obtains a payoff of 1 if a true cause passes, a payoff of —1 if any other
a # a* passes, and a payoff of 0 if the agent’s proposal is rejected. The principal’s payoff
reflects an objective of maximizing the positive policy impact of the research done on their
data.

2.1.3 Dissemination Noise

The principal releases a noisy dataset D(q) by perturbing the raw data. Specifically, they
choose a level of noise ¢ € [0,1/2] and every binary realization of each covariate is flipped
independently with probability ¢. So the noisy dataset D(q) is (Y5, (Xg)ae 4), where )2',‘; = X2
with probability 1 — ¢, and X’g = 1 — X? with probability ¢. The principal’s choice of ¢ is
common knowledge. A covariate a that matches the outcome in at least M observations in
the noisy dataset but would not pass the policymaker’s test — that is Xﬁ =Y for at least
M observations but X =Y for fewer than M observations — is called a bait.

The form of noise in our model is motivated by the dissemination noise currently in use by
statistical agencies, like the US Census Bureau. One could imagine other ways of generating
a ‘noisy” dataset, such as selecting a random subset of the observations and making them
fully uninformative, which corresponds to reserving the selected observations as a “hold-out”
dataset for out-of-sample testing. Our analysis explores the possibility of repurposing the
existing practice of adding dissemination noise, which more closely resembles perturbing each
data entry independently than withholding some rows of the dataset altogether.?

2.1.4 Remarks about the Model

We comment on our assumptions regarding the agents and the data in our model.

First, our model features very powerful p-hackers. A fraction h of researchers are totally
ignorant about the true cause, but they are incentivized to game the system by fishing for
some covariate that plausibly explains the outcome variable and passes the policymaker’s

3For instance, the Bureau publishes the annual Statistics of U.S. Businesses that contains payroll and
employee data of small U.S. businesses. Statisticians at the Bureau say that separately adding noise to each
business establishment’s survey response provides “an alternative to cell suppression that would allow us to
publish more data and to fulfill more requests for special tabulations” (Evans, Zayatz, and Slanta, 1998).
The dataset has been released with this form of noise since 2007 (US Census Bureau, 2021). For the 2020
Census data, the Bureau will add noise through the new differentially private TopDown Algorithm that
replaces the previous methods of data suppression and data swapping (Hawes and Rodriguez, 2021).



test. This kind of p-hacking by multiple hypothesis testing is made easy by the fact that
hackers have a continuum of covariates to search over and incur no cost from data mining.
Our assumptions represent today’s “wide” datasets and powerful computers that enable ever
easier p-hacking. Our analysis suggests that dissemination noise can improve social welfare,
even in settings where p-hacking is costless.

Second, the principal is an entity that wishes to maximize the positive social impact of
the research done using their data, but has limited power in influencing the institutional
conventions surrounding how research results are evaluated and implemented into policies.
In the model, the principal cannot change the policymaker’s test. Examples include private
firms like 23andMe that possess a unique dataset but have little say in government policy-
making, and agencies like the US Census Bureau that are charged with data collection
and data stewardship but do not directly evaluate research conclusions. Such organizations
already introduce intentional noise in the data they release for the purpose of protecting
individual privacy, so they may be willing to use the same tool to improve the quality of
policy interventions guided by studies done on their data. In line with this interpretation
of the principal, they cannot influence the research process or the policymaker’s decision,
except through changing the quality of the disseminated data. In particular, the principal
cannot impose a cost on the agent to submit a proposal to the policymaker, write a contract
to punish an agent who proposes a misguided policy, or change the protocols surrounding
how proposals get tested and turned into policies.

Third, the dataset in our model contains just one outcome variable, but in reality a typical
dataset (e.g., the US Census data) contains many outcome variables and can be used to
address many different questions. We can extend our model to allow for a countably infinite
number of outcome variables Y, Y2, ..., with each outcome associated with an independently
drawn true cause and red herring. After the principal releases a noisy version of the data,
one random outcome becomes relevant and the agent proposes a model for this specific
outcome. Our analysis remains unchanged in this world. This more realistic setting provides
a foundation for the principal not being able to screen the agent types by eliciting their
private information about the true cause without giving them any data. Who is a maven
depends on the research question and the outcome variable being studied, and it is infeasible
to test a researcher’s domain expertise with respect to every conceivable future research
question.

Fourth, the policymaker’s exogenous test only evaluates how well the agent’s proposal
explains the raw dataset, and does not provide the agent any other way to communicate his
domain expertise. Such a convention may arise if domain expertise is complex and difficult
to convey credibly: for instance, an uninformed hacker who has found a strong association
in the data can always invent a plausible-sounding story to justify why a certain covariate
causes the outcome. We also assume that the policymaker’s test is mechanically set and
does not adjust to the presence of p-hackers. This represents a short-run stasis in the science
advocacy process or publication norms — for instance, while we know how to deal with
multiple hypotheses testing, a vast majority of academic journals today still treat p < 0.05
as a canonical cutoff for statistical significance. Our analysis suggests that dissemination
noise can help screen out misguided policies in the short run, when the principal must take
as given a policymaking environment that has not adapted to the possibility of p-hacking.

To conclude, our basic model is meant to isolate the tradeoff between the cost imposed



by noise on honest researchers and the benefit of screening p-hackers. A discussion of how
the results are affected by relaxing our assumptions is in Section 6.

2.2 Screening Using Noise
We first derive the optimal behavior of the hacker and the maven.

Lemma 1. For any q € [0,1/2), it is optimal for the hacker to propose any a € A that
satisfies Xﬁ =Y, for every 1 < n < N. It is optimal for the maven to either propose
a € {a*,a"} that maximizes the number of observations n for which Xﬁ =Y, (and randomize
uniformly between the two covariates if there is a tie) or to propose any a € A that satisfies

Xo =Y, for everyl <n < N.

Given the policymaker’s exogenous test, hackers find it optimal to “maximally p-hack.”
Depending on the relative weight wy.ven that mavens put on reporting the true cause, they
will either use the noisy data to decide between their two true-cause candidates or engage in
p-hacking. If the principal releases data without noise, then hackers will propose a covariate
that is perfectly correlated with Y in the raw data. This covariate passes the policymaker’s
test, but it leads to a misguided policy with probability 1. The payoff to the principal from
releasing the data without noise is therefore no larger than 1 — 2h.

In fact, the principal cannot hope for an expected payoff higher than 1 —h. This first-best
benchmark corresponds to the policymaker always implementing the correct policy when the
agent is a maven and not implementing any policy when the agent is a hacker. We show that
with an appropriate level of dissemination noise, the principal’s expected payoff approaches
this first-best benchmark as the number of observations grows large.

Proposition 1. For every q with 1 —~ < q < 1/2, the principal’s payoff from using dissem-
wnation noise q converges to 1 —h as N — oo.

That is to say, dissemination noise is asymptotically optimal among all mechanisms for
screening the two agent types, including mechanisms that take on more complex forms that
we have not considered in our analysis.

The intuition is that noise does not prevent the agent from finding a policy that passes
the policymaker’s test if his private information narrows down the true covariate to a small
handful of candidates. But if the agent has a very large set of candidate covariates, then
there is a good chance that the noise turns several covariates from this large set into baits.
For example, if N = 100, v = 0.95, v = 0.9, and ¢ = 0.15, a covariate that perfectly
correlates with Y in the noisy dataset has a 90% probability of being a bait. In the same
environment, a maven who restricts attention to only two covariates (a* and a”) and proposes
the covariate that correlates more with the outcome only fails the policymaker’s test about
1% of the time. (As N grows for a fixed value of ¢ in the range given by Proposition 1, the
probability of a maven proposing a covariate other than a* or a” under his optimal strategy
converges to zero). Hackers fall for baits at a higher rate than mavens because they engage
in p-hacking and try out multiple hypotheses. Yet p-hacking is the hackers’ best response,
even though they know that the dataset contains baits.

While Proposition 1 applies asymptotically, the next result gives a lower bound on the
number of observations such that a given level of noise is better than not adding any noise.



Proposition 2. For every q with 1 — v < q < 1/2, the principal gets higher expected payoff
with q level of noise than with zero noise whenever
—In(h/8) —21n(h/32)
20+ =1 (W1 —q)+ (1 —4)g—0.5)*
— ln(h/16)}
20 =) I

For example, when ¢ = 0.95, v = 0.9, h = 0.1, this result says ¢ = 0.15 is better than

q = 0 whenever N > 1016.

NZmax{

3 Optimal Dissemination Noise in a Special Case

We now turn to a tractable special case where we can characterize the optimal level of noise
with any finite number N of observations. We make two modifications relative to the baseline
model discussed before.

First, we suppose the environment is such that the maven’s theory only requires a minimal
amount of data to distinguish a* from a”. Specifically, suppose we always have Y, = X%
and X2 = 1— X% for every observation n. Unlike in the baseline model, the true cause
is now perfectly correlated with the outcome Y and perfectly negatively correlated with
the red herring X%. We think of X% as the causal covariate that determines the values
of both X and Y. As before, the principal gets 1 if a proposal targeting a* passes, -1 if
any other proposal passes, and 0 if the proposal is rejected. Note that even though X is
perfectly negatively correlated with the outcome, it does not cause the outcome. So a policy
intervention that changes X is as ineffective at changing the outcome as a policy targeting
any other covariate a # a*.

Second, we suppose the policymaker uses the most stringent test. The proposal a passes
if and only if ¥;, = X? for all 1 < n < N. (The principal can only do worse if the policymaker
uses a more lenient test, as we will later show.)

As before, suppose agents maximize a weighted sum between reporting the true cause
and passing the policymaker’s test. Given the form of the test, the type 6 agent’s utility
from proposing a when the true cause is a* is:

We - ]-{a:a*} + (1 - ’UJ@) : ]-{Yn:X% for every 1<n<N}-
We suppose 0 < Whacker < 1 and 1/2 < wiayen < 1.

Lemma 2. For any q € [0,1/2], it is optimal for the hacker to propose any a € A that
satisfies X,‘j =Y, foreveryl <n < N, and it is optimal for the maven to propose a € {a*,a"}
that maximizes the number of observations n for which X,‘? =Y, (and randomize uniformly
between the two covariates if there is a tie).

When the agents follow the optimal behavior described in Lemma 2, the principal’s
expected utility from choosing noise level ¢ is —hViacker(q) + (1 — ) Vinaven(q), where Vp(q) is
the probability that an agent of type 8’s proposal passes the policymaker’s test in the raw
data, when the noise level is q. The next result formalizes the core idea that a small amount
of noise harms the hackers more than the mavens.



Lemma 3. /‘/;uwen(Q) = _(2]\][V71/)NqN71(1 - Q>N71 and Vi;acker(Q) = _N(]- - q)Nil' In
particular, V,, ... (0) = 0 while V), ..(0) = —N.

maven

We can show that the principal’s overall objective —hViacker(¢) + (1 — 2)Vinaven(q) is
strictly concave, and therefore the first-order condition characterizes the optimal ¢, provided
the solution is interior:

1/(N-1)
Proposition 3. ]f% < (2]\][\[71)(1/2)1\7*1 then the optimal noise level is ¢* = (ﬁ@) .
More noise is optimal when there are more hackers and less is optimal when there are more

observations. If {1 > (2]\]]\;1)(1/2)]\’*1 then the optimal noise level is ¢* = 1/2.

Proposition 3 gives the optimal dissemination noise in closed form. With more hackers,
screening out their misguided policies becomes more important, so the optimal noise level
increases. With more observations, the same level of noise can create more baits, so the
principal can dial back the noise to provide more accurate data to help the mavens.

3.1 Dissemination Noise and p-Value Thresholds

Now suppose the principal can choose both the level of noise ¢ € [0,1/2] and a passing
threshold N € {1,..., N} for the test, so that a proposal passes whenever X? =Y, for at
least /N out of the N observations.

Proposition 4. When the principal can optimize over both the passing threshold and the
noise level, the optimal threshold is N = N, and the optimal noise level is the same as in
Proposition 3.

We can interpret this result to say that stringent p-value thresholds and dissemination
noise are complementary tools for screening out p-hackers and misguided policies. Think of
different passing thresholds as different p-value thresholds, with the threshold N = N as
the most stringent p-value criterion that one could impose in this environment. Benjamin
et al. (2018)’s article about lowering the “statistical significance” p-value threshold for new
findings includes the following discussion:

“The proposal does not address multiple-hypothesis testing, P-hacking, |...|
Reducing the P value threshold complements — but does not substitute for —
solutions to these other problems.”

Our result formalizes the sense in which reducing p-value thresholds complements dissemi-
nation noise in improving social welfare from research.

3.2 Further Extensions

We explore several relaxations of our simplifying assumptions for the special case studied in
this section. First, we consider non-i.i.d. observations, such as those in time-series data, or
data from social networks. Second, we look at a model in which the maven can face a red
herring that is harder to disprove with data than we have assumed so far. Third, we relax
the assumption of a continuum of potential covariates. Finally, we relax the assumption that
there exists a correct explanation for the outcome variable in the data.
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3.2.1 Non-i.i.d. Observations

In the model from Section 3, for each a € A the raw data contains N i.i.d. observations
of the a covariate X?. This gives a vector X € {0,1}" with independent and identically-
distributed components X¢. The i.i.d. assumption rules out certain applications where there
is natural dependence between different observations of the same covariate, such as data
from social networks, panel data, or time-series data. We now relax this assumption. For
each policy a there is associated a covariate X € {0,1}", but the ex-ante distribution of
X4 is given by an arbitrary, full-support u € A({0,1}"). (Full support means that pu(z) > 0
for every z € {0,1}V.)

The model is otherwise the same as the one from Section 3. In particular, the true cause
and the red herring covariates still exhibit perfect correlation and perfect negative correlation
with the outcome variable, viewed as random vectors in {0,1}". To be concrete, Nature
first generates a* and " independently and uniformly from A. Then, Nature generates the
outcome variable as a vector, Y ~ u. Then Nature sets X¢ =Y and X% =1 —Y. Finally,
for each a € A\{a*, a"}, Nature draws the vector X* ~ p independently (and independently
of V).

When the principal prepares the noisy dataset D(q), noise is still added to each obser-
vation of each covariate independently with probability q. We first show that the hacker’s
payoff-maximizing strategy is still to propose a covariate a with Y,, = Xﬁ for every observa-
tion n in the noisy data. That is, regardless of how the IV observations are correlated, there
is nothing more “clever” that a hacker could do to increase the probability of passing the test
than to “maximally p-hack” and propose a covariate that appears perfectly correlated with
the outcome variable in the noisy dataset.

Lemma 4. For any y € {0,1}V, P[X® =y | X = z] is mazimized across all z € {0,1}" at
x =1y, for any 0 < q < 1/2 and full-support .

Using the hacker’s optimal behavior in Lemma 4, we can show that a small amount of
dissemination noise will differentially impact the two types’ chances of passing the test, thus
it improves the principal’s expected payoff as in the case when the observations are i.i.d.

!

maven(o) = 0 while Vhiacker(o) < 0. In
particular, there exists ¢ > 0 so that any noise level 0 < q < q is strictly better than ¢ = 0.

Proposition 5. For any full support n € {0,1}, V/

When the raw dataset consists of correlated observations — for example, data on N
individuals who influence each other in a social network or N periods of time series data for
a very large number of economic indicators — it may be unreasonable for the principal to
only release some of the observations (e.g., only the time series data for even-number years)
and keep the rest of the raw dataset as a secret holdout set to test the agent’s proposal and
identify the p-hackers. Our procedure of releasing all of the observations infused with i.i.d.
dissemination noise (which resembles the current implementation of privacy-preserving noise)
may be more reasonable in such contexts. Proposition 5 shows our main insight continues
to be valid. Even when the observations have arbitrary correlation, which the hackers may
take advantage of in their data mining, a small amount of dissemination noise still strictly
improves the principal’s expected payoff.
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3.2.2 More Misleading Red Herrings

In the model from Section 3, we assumed that the “red herring” covariate is perfectly nega-
tively correlated with Y. This corresponds to an extreme kind of complementarity between
theory and data in learning the true cause, as even a small amount of data can disprove the
theoretically plausible alternative and identify the truth.

We now consider a situation where the red herring is more misleading, and not always
easily ruled out by the data. We allow the red herring to be just like any other covariate in A,
so that it is simply uncorrelated with the outcome instead of perfectly negatively correlated
with it. So, the only modification relative to the model from Section 3 is that X, like X
for a ¢ {a*,a"}, is also independent of Y.

It is easy to see that the change in how we model the red herring covariate does not affect
the optimal behavior of either the hacker or the maven. A hacker proposes some covariate
a that perfectly correlates with Y in the noisy dataset. A maven chooses between a* and
a” according to how they correlate with Y in the noisy data, randomizing if there is a tie.
When the red herring covariate is independent of the outcome in the raw dataset, the maven
falls for the red herring with a higher probability for every level of noise. Also, unlike in the
baseline model where the maven gets rejected by the policymaker if he happens to propose
the red herring, here the maven may propose a misguided policy that passes the test if all
N realizations of X% perfectly match that of the outcome Y in the raw dataset.

Our next result implies that a strictly positive amount of dissemination noise still im-
proves the principal’s expected payoffs given “reasonable” parameter values.

Proposition 6. The derivative of the principal’s expected payoff, as a function of the noise
level ¢, is AN — (1 — h)N(N + 1)2=N*+D when evaluated at ¢ = 0. This derivative is strictly
positive when h > 2N+N1—le+1 In particular, when this condition on h is satisfied, there exists
q > 0 so that any noise level 0 < q < q is strictly better than ¢ = 0.

When the red herring covariate is perfectly negatively correlated with the outcome vari-
able, we found that the optimal level of noise is always strictly positive. Proposition 6 says
this result remains true even when the red herring can be more misleading, provided there
are enough hackers relative to the number of observations in the data. The lowest amount
of hackers required for dissemination noise to be useful converges to 0 at an exponential rate
as N grows. For example, even when there are only N = 10 observations, the result holds
whenever more than 0.53% of all researchers are p-hackers.

3.2.3 Finite Number of Covariates

In the model from Section 3, we imagine there is a continuum of covariates a € A = [0, 1].
This represents an environment with a very “wide” dataset, where there are many more
candidate explanatory variables and econometric specifications than observations. But the
main idea behind our result remains true if there is a finite but large number of covariates.

Suppose A = {1,2,..., K}, so there are 2 < K < oo covariates. As in the baseline
model, a true cause and a red herring are drawn from the set of all covariates, with all pairs
(a*,a") € A%, a* # a" equally likely. The outcome Y is perfectly positively correlated with
the true cause, so Y = X% . The other covariates (including the red herring) are independent
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of the outcome, as in the extension in Section 3.2.2. Once (a*,a”) are drawn, we have fixed
a joint distribution among the K + 1 random variables (Y, X!, ..., XX). The raw dataset
consists of N independent observations drawn from this joint distribution. The principal
releases a noisy version of the dataset with noise level ¢ € [0,1/2] as before.

As the number of covariates K grows, there is more scope for p-hacking to generate
misguided policies. This happens for two reasons. First, holding fixed the policymaker’s test
and the number of observations, it is easier for the p-hacker to find a covariate that passes
the test when there are more covariates to data mine. Second, the probability that the p-
hacker proposes an incorrect covariate also increases with K. When the number of covariates
is finite, a p-hacker has a positive probability of stumbling upon the true cause by chance,
but this probability converges to 0 as K goes to infinity. As the statistical environment
becomes more complex and the number of potential models explodes (K — o), not only is
the p-hacker more likely to pass the test, but his proposal also leads to a misguided policy
with a higher probability conditional on passing.

In fact, the social harm of a p-hacker converges to that of the baseline model with a
continuum of covariates as K — o00. As a result, we can show that a small amount of
dissemination noise improves the principal’s payoffs relative to no noise when K is finite but
large, provided the fraction of hackers is not too close to 0.

Proposition 7. Let the number of observations N and the fraction of hackers 0 < h <1 be
fixed, and suppose h > 2N+N1—j:11v+1 There exists a noise level ¢ > 0 and an integer K so that
when there are K covariates with K > K, the principal does strictly better with noise level

q' than noise level 0.

The lower bound on the fraction of hackers in this result is mild and matches the condition
from Proposition 6. If there are 10 observations and more than 0.53% of researchers are
uninformed, then the principal can improve her expected payoff with a non-zero amount of
noise whenever the (finite) dataset contains enough covariates.

3.2.4 No True Cause

We turn to a version of our environment where all models can be wrong. Suppose that,
with some probability, none of the covariates in the dataset is the causal mechanism behind
the outcome. As in the baseline model, Nature draws a* and a” uniformly at random from
[0,1]. With probability 0 < 3 < 1, the covariate a* is the true cause and X is perfectly
correlated with Y. But with the complementary probability, a* is another red herring and
X9 is perfectly negatively correlated with Y (just as X is). The maven observes a” and
a* — the maven does not know which is which, and does not know whether a* is the true
cause or another red herring.

The agent can either propose a covariate a € A, or report @ indicating that none of the
covariates is the true cause. If the agent proposes a covariate, the policymaker implements
it if and only if it passes the policymakers’ test (that is, if it is perfectly correlated with YV in
the original dataset). The principal gets 1 if the true cause is implemented, 0 if the proposal
is rejected, and -1 if any other covariate is implemented: so when the data does not contain
the true cause, the principal gets -1 no matter which policy gets implemented. If the agent
reports @, then no policy is implemented and the principal gets 0.
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The type 0 agent gets 0 < wy < 1 from being right (either proposing the true cause when
there is one, or reporting @ when no true cause exists in the dataset), and gets 1 — wy when
the reported covariate is implemented. (Note that agents would never abstain from proposing
a covariate even if they had this option in the baseline model or in the previous extensions,
since they always get zero utility from abstaining but expect to get strictly positive utility
from proposing a random covariate.)

Proposition 8. Suppose Wyaen > 3/4 and B > Wiaven- Then there exists some § > 0 so
that the principal strictly prefers any q level of noise with 0 < ¢ < ¢ to 0 noise.

This result says that even when there is some probability that none of the covariates is
the true cause, provided this probability is not too high and agents put enough weight on
being right, a small enough amount of dissemination noise is still strictly better than no
noise. A stronger assumption on wyayen is needed for this result compared to the previous
results. This ensures that when the maven is sufficiently confident that neither a* nor a" is
the true cause, he would rather report @ (and get the utility for being right) than report
some wrong covariate that passes the policymaker’s test.

4 A Numerical Example of Dissemination Noise and p-
Hacking in Linear Regressions

While our models from Sections 2 and 3 are highly stylized, we show through a numerical
example that dissemination noise may play a similar role in screening the researcher’s ex-
pertise in more realistic empirical settings that do not satisfy all of our model’s simplifying
assumptions.

We consider a linear regression setting with a continuous outcome variable and some
continuous covariates, where the outcome is the sum of three covariates plus noise. The
three causal covariates are randomly selected from a set of potential explanatory variables,
and the principal would like to implement a policy that correctly targets the causal covariates.
An uninformed agent may p-hack by trying out all regressions involving different triplets of
explanatory variables to game the policymaker’s test, which simply evaluates the agent’s
econometric specification based on its explanatory power on the raw dataset.

To be concrete, there are 20 covariates X',..., X?° with each X* ~ A(0,1), where
N (p,0?) is the normal distribution with mean g and variance 2. It is known that the
outcome Y is generated from a linear model Y = X + X% 4+ X% + ¢ where 1 < i} < i} <
i% < 20 are three of the covariates, with all triplets equally likely, and € ~ N(0,4) is an error
term. Without loss, we analyze the case when the causal covariates have the realization
(i%,45,4%) = (1,2,3). The principal’s raw dataset consists of 20 independent observations of
the outcome variable and the covariates from their joint distribution.

The principal disseminates a noisy version of the data to the agent by adding an inde-
pendent noise term with the distribution N'(0, 02 ,..) to every realization of each covariate in
the dataset. The noise variance o2, controls how much dissemination noise the principal
injects into the released data.

The agent analyzes the data and proposes a model (i1, 29,23) for Y. Then a policymaker
tests the proposed model on the raw data and implements a policy targeting the covariates
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Principal's Payoff when Facing a Hacker Principal's Payoff when Facing a Maven
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Figure 1: The principal’s expected utility conditional on the agent being a hacker or a maven,
as a function of the amount of dissemination noise.

(i1, 12,123) if the model passes the test. Suppose (i1,122,73) passes the test when the linear
regression’s R? on the raw data exceeds a critical value, otherwise the proposal is rejected.
The critical value is the 95-percentile R? when a triplet of covariates is chosen uniformly
at random from all possible triplets. The principal gets utility 1 if the correct specification
(1,2,3) passes the test, utility -1 if any other specification passes the test, and utility 0 if
the proposal is rejected.

With some probability, the agent is a hacker who is uninformed about (i},},75) and
runs all (230) = 1140 linear regressions of the form ¥ = X% 4 X% + X% + ¢ for different
choices of the three covariates iy, 79, 73 in the noisy data. The agent then proposes the model
with the highest R? value. With complementary probability, the agent is a maven whose
expertise in the subject lets him narrow down the causal model of Y to either the true
Y = X'+ X2+ X3 +¢, or the incorrect model Y = X* + X° + X%+ €. The maven runs two
regressions using the noisy data, and proposes either (1,2, 3) or (4,5,6) to the policymaker,
depending on which regression has a higher R?. (Unlike in the model where we derive optimal
behavior for the agents, for this example their behavior are exogenously given.)

We draw a few comparisons between the example and our baseline model from Section
2. Like our model, the example captures a setting with a wide dataset, in the sense that
there are many more potential specifications (more than 1000) than there are observations
in the data (20). The true cause a* corresponds to the triplet (1,2,3), and the red herring a”
corresponds to the triplet (4,5, 6). Unlike in the baseline model, this example does not feature
a continuum of potential specifications or independence between different specifications (since
two triplets may share some explanatory variables). Nevertheless, we numerically show that
injecting dissemination noise in the form of choosing a strictly positive 2 .. has some of
the same properties and trade-offs for the principal as in our simple baseline model.

Figure 1 depicts the expected utility of the principal conditional on the agent’s type, as a
function of the amount of dissemination noise that the principal adds to the covariates before
releasing the dataset. The expected social harm from a hacker agent is mitigated when there
is more noise. The idea is that when a hacker analyzes a noisy dataset, the model (i1, iz, i3)
with the highest regression R? in the noisy data is often a bait with poor R? performance in
the true dataset. The covariates iy, 19,73 look correlated with the outcome Y only because
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Principal's Payoff in the Numerical Example
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Figure 2: Expected utility of the principal as a function of the standard deviation of dissem-
ination noise, when 20% of the agents are hackers and 80% are mavens.
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Figure 3: Comparative statics of the optimal amount of dissemination noise with respect to
the fraction of hackers.

they were hit with just the right noise realizations, but a hacker who falls for these baits
and proposes the model (iy,i9,73) will get screened out by the policymaker’s test, which is
conducted in the raw data.

Of course, a maven is also hurt by the noise. The principal’s expected payoff when facing
a maven falls when more dissemination noise is added to data. The maven needs to use the
data to compare the two candidates (1, 2, 3) and (4, 5, 6). Noisier data makes it harder to
identify the true causal model.

Suppose 20% of the agents are hackers and 80% are mavens. Figure 2 shows the expected
social welfare as a function of the amount of dissemination noise. Consistent with the message
of Proposition 3, the optimal dissemination noise trades off screening out hackers, using the
baits created by noise, versus preserving data quality for mavens to identify the correct
model.

The optimal amount of dissemination noise is strictly positive because a small amount
of noise hurts hackers more than mavens. The intuition in this example, as in the model, is
that it is likely that noise creates some baits in the disseminated dataset, but it is unlikely
that the specification (4,5,6) happens to contain one of the baits. The maven, who only
considers the two candidate specification (1,2,3) and (4,5, 6), is much less likely to fall for
a bait than the hacker, who exhaustively search through all possible specification.

Figure 3 illustrates the comparative statics of how the optimal level of dissemination
noise varies with changes in the environment. When the fraction of hackers increases, more
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Principal's Payoff (Noise on Outcomes and Covariates)
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Figure 4: Expected utility of the principal as a function of the standard deviation of dissem-
ination noise, if noise is added to both the outcome variable and the covariates. Again, we
assume that 20% of the agents are hackers and 80% are mavens.

noise is optimal.

Finally, Figure 4 shows the principal’s expected payoff as a function of the noise standard
deviation o, if dissemination noise is also added to the outcome variable (in addition to
the covariates). This numerical result suggests that the optimal amount of noise is lower if,
unlike in our theoretical results, noise is added to every variable in the dataset.

5 Dynamic Environment with Data Reuse

The models from Sections 2 and 3 presume that a test performed on the raw dataset deter-
mines whether the agent’s proposal is implemented as policy, but the raw data itself is never
publicly revealed. In practice, if these tests determine high-stakes policy decisions, it may
be impossible to credibly conduct them on a secret dataset. Transparency concerns may
require that the data used to test proposals must be made public in a timely manner.*

We now turn to a model where the principal owns a dataset that is used by various
researchers to study different questions over a long period of time. (For instance, the US
Census is only conducted every ten years and the same dataset is used to answer a large num-
ber of research questions in the social sciences.) As researchers propose policy interventions
to address different research questions, their proposals must all be tested in a transparent
way. Suppose the principal is legally bound to periodic releases of noisy data — multiple
noisy “waves” of the data are made public over time, which are then used to test the most
recent policy proposals. A policy proposal made in April 2024, for example, would be tested
using the May 2024 release of noisy data. An October proposal would be tested against
the November release, and so on. We assume that the principal cannot delay the release of
the noisy data used to test past proposals, even though such public data releases become
accessible to future p-hackers who will try to data mine the same dataset.

4Indeed secret access is the focus of the work of Dwork et al. (2015b), who propose methods for
differentiably-private access to the raw data. Their work is motivated by the same concerns over re-use
that we turn to in this section. Our results in Section 5 may be read as validating the use of the methods in
Dwork et al. (2015b).
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In our dynamic model, time works in the hackers’ favor, as p-hacking becomes easier
when data is reused. Hackers can exploit all past releases of the noisy data to propose
policies that are increasingly likely to pass the policymaker’s test. As we shall see, in the
end, the principal will rationally give up on adding noise to test data, and will release the
original raw dataset. At that point, the hacker can always find misguided policies that pass
the test and get implemented by the policymaker. The promise of using noisy data to deal
with p-hacking is real, but finitely lived.

Time is discrete and infinite: ¢ = 0,1,2,... In period 0, the principal receives a raw
dataset as before, but with the following changes compared to the baseline static model:

e The dataset contains a continuum of covariates, (X%),ca. But, there is a countably
infinite number of outcome variables, (Y');—g12, . A true cause a;j € A is drawn
uniformly at random from A for each outcome Y*. The principal does not receive more
data in later periods: no additional outcomes, covariates, or observations will arrive.
The “dynamic” aspect of the model concerns how a fixed dataset must be reused over
time.

e Suppose for simplicity the maven knows the true cause of every outcome, so red herrings
are not generated.

e For simplicity, suppose there is only a single observation N = 1 of the outcomes and
the covariates. This is for tractability so that the state space of the resulting model
becomes one-dimensional. It is, of course, an extreme version of the assumption of a
wide dataset.

e Suppose the unconditional distribution of each outcome variable and each covariate is
Bernoulli(k) for some 0 < £ < 1. The baseline model looked at the case where k = 0.5.

These simplifying changes allow us to focus on the intertemporal trade-offs facing the
principal. In each period, she generates a noisy version of the raw dataset to evaluate the
agent’s proposal. This testing dataset must be publicly released before another agent uses
the same dataset to propose the causal covariate behind another outcome variable. The
principal will have a short-term incentive to decrease noise and thus improve the quality of
tests for current proposals, but a long-term incentive to increase noise so as to plant baits
for future hackers. The intertemporal trade-off will be affected by a “stock of randomness”
that is decreased as time passes.

In each period, the principal releases a possibly noisy version of the raw data: in period
t, she releases a dataset D(q;) after adding a level ¢ of noise to the raw dataset. The
parameter ¢, is, as before, the probability that each X* is flipped. (As in the baseline model,
the principal only perturbs covariates, not outcome variables.) FEach release is a testing
dataset. Note that the principal always adds noise to the raw dataset, not to the previous
iteration of the noisy dataset.

In each period ¢ = 1,2,..., society is interested in enacting a policy to target the true
cause behind the outcome Y™®  where m(t) is the t-th outcome with a realization of 1 in
the principal’s dataset. So, in the dynamic model we interpret an outcome realization of
0 as benign, and an outcome realization of 1 as problematic and requiring intervention. A
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short-lived agent arrives in each period ¢; the agent is a hacker with probability A and a
maven with complementary probability. If the agent is a maven, recall that we are assuming
the agent always knows and proposes the true cause of Y™ If the agent is a hacker, he
uses all of the testing datasets released by the principal up to time ¢ — 1 to make a proposal
that maximizes the probability of being implemented. After receiving the agent’s proposal
a, the principal generates and publishes period t’s testing dataset D(q;). The policymaker
implements policy a if Y™(!) = X in this period’s (possibly noisy) testing dataset. In period
t, the principal gets a payoff of 1 if the true cause for Y®) passes the test, -1 if any other
covariate passes the test, and 0 if the proposal is rejected. The principal maximizes expected
discounted utility with discount factor ¢ € (0, 1)

In each period ¢t > 2, a hacker proposes a policy a with X =1 in all of the past testing
datasets. Such a exists because there are infinitely many policies. (In the first period, the
hacker has no information and proposes a policy uniformly at random.) Suppose a covariate
a that shows as “1” in all the noisy testing datasets up to period ¢ — 1 has some b; chance
of being a bait, that is X® # 1 in the raw data. Then the principal’s expected payoff today
from releasing a testing dataset with noise level ¢, is

u(ge; br) - = (L= h)(1 = go) + h(=(1 = b:)(1 = ;) = bege).

In the expression for u, (1 — h)(1 — ¢) is the probability that the agent is a maven and the
value of the true cause for Y in the period ¢ testing dataset, Xeai , has not been flipped. The
term (1 — b;)(1 — ¢) represents the probability that the hacker’s policy is not a bait and its
covariate value has not been flipped in the testing dataset. Finally, b;q; is the probability
that the hacker’s policy is a bait, but its covariate value has been flipped in the testing
dataset.

The principal’s problem is similar to an intertemporal consumption problem. We can
think of b, as a stock variable that gets consumed over time. But rather than a stock of
some physical capital, it measures the stock of randomness in the principal’s raw dataset.
This stock depletes as more and more noisy versions of the data are made public. We view
u(q; b) as the principal’s flow utility from “consuming” % — q, where the stock of randomness

left is b, and the stock evolves according to b, = Hﬁ%.

The intertemporal trade-offs faced by the principal are captured by ‘3—7; <0

' Db
8(1;;;:1 > (. In words, adding less noise to the testing dataset today gives higher utility today,

since the maven’s correct policy is more likely to pass the test, and the hacker’s misguided
policy is more likely to get screened out. But this depletes the stock of randomness faster,
and makes it harder to defend against future hackers.

Our next result shows that, in every optimal solution to the principal’s problem, the stock
of randomness is always depleted in finite time. The basic idea is that noise has decreasing
returns: the marginal effect of noise on slowing the decline of b, is reduced as b; decreases.
There is a time t* at which the principal abandons the use of noise.

9u - (), and

Proposition 9. Suppose that h < 1/2 and k € (0,1). Let {(bt,q:)} be a solution to the
principal’s problem. Then, for all t, ¢ < 1/2 and b, is (weakly) monotonically decreasing.
There t* such that

o Ift <t then by < by
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Figure 5: The evolution of the stock of randomness (i.e., the probability b, that the hacker’s
best guess a is a bait with X* # 1 in the raw dataset) and the noise level in an environment
with 45% hackers, discount factor 6 = 0.99, and an unconditional probability x = 0.01 that
each covariate is equal to 1.

o [ft>t* then ¢4 =0 and by = 0.

Figure 5 shows an example with x = 0.01, 6 = 0.99, and h = 0.45. In period 1, a
hacker has a 1% chance of guessing a covariate that would validate in the raw dataset. The
principal releases noisy testing datasets at the end of periods 1, 2, 3, and 4. In period 5, a
hacker can look for a covariate that has a value of “1” in each of the four testing datasets
from the previous periods, and propose it as the model for today’s outcome variable Y%
This proposal will validate in the raw dataset with more than 65% probability, reflecting a
weakening defense against p-hackers as data is reused and the stock of randomness depletes.
At this point, the principal finds it optimal to give up on dissemination noise and releases the
raw dataset as the testing dataset at the end of period 5. In every subsequent period, both
agent types will propose passing policies, so the policymaker implements correct policies 55%
of the time and misguided policies 45% of the time.

6 Concluding Discussion

We argue that infusing data with noise before making data public has benefits beyond the
privacy protection guarantees for which the practice is currently being used. Noise baits
uninformed p-hackers into finding correlations that can be shown to be spurious. The paper
investigates these ideas in a simple model that captures the trade-off between preventing
hackers from passing off false findings as true, and harming legitimate research that seeks to
test an ex-ante hypothesis.
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A  Proofs

A.1 Proof of Lemma 1

Proof. For any covariate a # a*, we have P[X? = Y, | X¢ = Y,] = 1 — ¢ and P[X? =
Y, | X& #Y,] = q for each observation n. Since 1 — ¢ > ¢, the distribution of the number
of observations that match the outcome in the raw data for a covariate @ with X* =,
for every n first-order stochastically dominates that of any other covariate. Reporting such
a covariate thus maximizes the chance of passing the policymaker’s test, for any . Since
the hacker will never find a*, he will only maximize this passing chance. Similarly, among
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those covariates a ¢ {a*,a"}, the maven’s expected payoff is maximized by covariates @ with
X% =, for every n.

It remains to show how the maven optimally chooses between a* and a” based on his
information. Suppose the maven learns the true cause and the red herring are in the set
{a’,a"}, where X% matches Y in k; observations and X matches Y in ky observations with
k?l < k’g.

If a* = @/, the maven’s data has likelihood p* (1—p)V =% -(1/2)Y where p = (1—q)+(1—
¥)q > 1/2. This is because P[X®" = Y,] = j for every observation n, while P[X?" = Y,| = 1/2
for every observation n. If a* = a”, then the data likelihood is p*2(1 — p)N=*2 . (1/2)N by
the same reasoning. This second likelihood is larger, because ko > k; and p > 1/2. So the
covariate that matches the outcome in more observations has a higher posterior probability
of being the true cause.

Let a € {d’,a"} and consider the probability that a passes the policymaker’s test. Con-

ditional on a = a*, if X* = Y,,, then there is % chance that X¢ =Y,. If X® # Y},

(=0 chance that X? = Y,,. Conditional on a = a”, if X;; =Y, then
there is 1 — ¢ chance that X¢ =Y,,. If X* # Y, then there is ¢ chance that X¢ =Y,,. By
simple algebra, v > 1/2 implies that m > 1— ¢ and Wé)(l—q) > ¢. So, the
covariate a” with a higher posterior probability of being the true cause also has a higher
chance of passing the policymaker’s test. The maven gets strictly higher expected utility
from proposing a” than a’ because the probability of being right, and of passing the test, are
higher under ¢” than under ao’. O

: g
then there is )

A.2 Proof of Proposition 1

Proof. Let such a ¢ be fixed.

When the hacker proposes a with Xﬁ =Y, for every 1 < n < N, the number of
observations n where X% = Y, has the distribution Binom(N, 1—¢q). Let £ be the probability
that the hacker’s proposal is accepted. Since 1 — ¢ < v, we have £y — 0 as N — oo. So the
principal’s utility conditional on facing a maven converges to 0 when N — oo.

For the maven, consider the following three events.

Ei: {n: X% =Y, }| < |{n: X% =Y,}|. The distribution of the LHS is Binom (N, t(1 —
q)+(1—v)q), where ¢(1—q)+(1—1)g > 1/2since ¢ > 1/2 and g < 1/2. Also, the distribution
of the RHS is Binom(/V, 1/2). By the law of large numbers, the probability of E; goes to 0
when N — oo.

Ey: |{n: X¥ =Y,}| < [v-N]. The LHS has the distribution Binom(N, 1) where
¥ > 7. So by the law of large numbers, the probability of E; also approaches 0 when
N — 0.

Let E3 be the event that the maven optimally proposes a covariate other than a* or a”.
Consider the feasible strategy for the maven of picking between the two covariates identified
by his private information based on which one matches the outcome in more observations.
Except on the event F; U FEs, this feasible strategy correctly identifies a* and the proposal
gets accepted by the policymaker. Therefore, the expected payoff of this feasible strategy
for the maven is at least 1 — P[E)} U E,| for any value of 0 < wpayen < 1. When the maven
proposes some a ¢ {a*,a"} with X;f =Y, for every n, he gets 1 — wyaven if the proposal
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is accepted and 0 otherwise, and acceptance happens with probability /. In order for the
maven’s optimal strategy to achieve at least an expected payoff of 1 —IP[E; U Es], we therefore
need

PIE3] - (1 — wWmaven) - €n + (1 = P[B]) -1 > 1 — Py UBy] <= P[By] < — 19 B]
1 - (1 - wmaven)gN
Note that we have P[E3] — 0 as N — oo, since we have both P[E; U Es] — 0 and {y — 0
as N — oo.
Outside of the event E; U Fy U Ej3, the maven’s optimal strategy proposes a* and this
proposal passes the policymaker’s test. So the principal’s utility conditional on facing a
maven converges to 1 when N — oc.

[]

A.3 Proof of Proposition 2

Proof. Consider the events E1, F», and Fs3 in the proof of Proposition 1. )
First, we bound the probability of F;. Using Hoeffding’s inequality, since [{n : X2 =Y, }|
has a binomial distribution with success rate ¥(1 — q) + (1 —v)q,

Y(1—q)+ (1 —1)g+0.5 ¢(1—Q)+(1—¢)q—0-5]z>
2 2 ‘

P|{n: X =Y, }| < N] < exp(—2N]

Similarly, since |{n : X" = Y, }| has a binomial distribution with success rate 1/2,
—q)+(1—¢)g+05 Y1 -9 +(1 —w>q—0-5]2)
2 2 .

—21n(h/32)
1-g)+(1—1)g—0.5)"

P[[{n: X* =Y,}| > v N] < exp(—2N]|

Bounding the probability of each of these two events by h/32 requires N > e
This ensures P[E,] < h/16.

Also by Hoeffding’s inequality, P[E,] < exp(—2N[¢) — 4]?). So whenever N > _25(% ;S),
we have P[E,] < h/16.

The probability that the hacker’s proposal gets accepted is bounded by exp(—2N - [¢ —

— y Hoeffding’s inequality. This quantity is less than whenever N > -—=EL
(1—7)]?) by Hoeftding’s i lity. Thi tity is less than h/8 wh N > 2.[(11((1’1/5;]
From the proof of Proposition 1, we have P[E;] < — L] < BPEUE] - \yhen

T—(I—wmaven)fn —  1—fn
P[E, U Es) < h/8 and { < h/8, we have P[Es] < h/4.

So whenever N satisfies the bound in the statement of the proposition, we have P[E; U
E» U E3) < (3h)/8. The principal’s expected payoff is at least —1 - (32) + (1 — 22) when the
agent is a maven, and at least —1-(h/8) when the agent is a hacker. So, the principal’s total
expected payoff is larger than (1—h)-[—1-(2)+(1—32)]+h-(=h/8) > 1— T — %2 > 1—2h.
By comparison, the principal’s payoff is smaller than 1 — 2h when ¢ = 0.

]

A.4 Proof of Lemma 2

Proof. Any strategy of the hacker leads to zero probability of proposing the true cause, so
the hacker finds it optimal to just maximize the probability of the proposal passing the
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test. If the hacker proposes a covariate that matches Y in n; observations and mismatches
in ng observations, then the distribution of the number of matches in the raw dataset is
Binom(nyg, ¢) + Binom(n;,1 — q). A covariate that matches the outcome variable in every
observation in noisy dataset will have a distribution of Binom(ny+n,1—¢) = Binom(ng, 1 —
q) + Binom(ny, 1 — ¢) as its number of matches in the raw dataset, and Binom(ng, 1 — q)
strictly first-order stochastic dominates Binom(ng, q) if np > 1 and ¢ < 1/2. Therefore the
hacker finds it optimal to propose any a € A that satisfies )A(fl‘ =Y, forevery 1 <n < N.
For the maven, since wpaven > 1/2, it is never optimal to propose covariates other than
a* or a” since these have zero chance of being the true cause. Out of the two candidate
covariates that the maven narrows down to, the one that matches Y in more observations
in the noisy dataset has a higher posterior probability of being the true cause. Note that if
the maven proposes a”, the policymaker always rejects the proposal since X¢ =1 —Y in
the raw dataset. Also, if the maven proposes a*, it always passes the test since X% =Y in
the raw dataset. [

A.5 Proof of Lemma 3

Proof. The hacker picks a covariate a where X @ =Y, for every n. Given that the policymaker
is using the most stringent test, we get Viaaer(q) = (1 — q)V. For the maven, there are 2N
bits of observations on the variables X% and X . If strictly fewer than N bits are flipped,
then the maven proposes the correct policy (and therefore it passes the test). If exactly N
bits are flipped, then the maven recommends the correct policy 1/2 of the time. So,

Vinaven(¢) = (P[Binom(2N, q) < N] + %P[Binom(?N, q) = NJ)

We have
, d . 1.
Vmaven(Q) :d_(P[Blnom(QNa Q> < N} + EP[Bmom(QN, q) = N])
q

:diq(P[Binom(QN, 9) < N] - 5P[Binom(2N q) = N])

— — 2N - P[Binom(2N — 1,q) = N] — %diq(qzv(l Y (2]<[\f>)7

where the last step used the identity that d%]P’[Binom(M, q) < N|] = —M-P[Binom(M—1,q) =
N]. Continuing,

— 2N - gV(1— g (2N - 1) —~ 1(QN) N1 =g = ¢"(1 =g

N 2\ N
2N —1 1
— NP1 -V —2¢—=-2-((1—¢q) -
(N)q( q) (q2 (1—q) Q)>,
using the identity (2]37 ) =2 (2]\][\[_1). Rearranging shows the lemma. O
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A.6 Proof of Proposition 3
Proof. Using the Lemma 3,

2N —
N

d

d—q[—thacker(Q) + (1 = 7)Vanaven(q)] = AN (1 — )™ — (1 — h)( 1) N1 — gV

/(N-1)
The FOC sets this to 0, so h—(1—h) (2N "¢Vt = 0. Rearranging gives ¢* = (% <2N11)) .
N
We know h — 177 is increasing, so 5l > 0. We know N — (2N 1) is increasing in NV, there-
fore both the base and the exponent in ¢* decrease in IV, so 6‘7 < 0. ]

A.7 Proof of Proposition 4

Proof. The principal’s expected utility conditional on the agent being a maven is the same
for every N € {1, ..., N}, since the maven always proposes either a* or a” depending on which
covariate matches Y in more observations, and the proposal passes the /N threshold if and
only if it is a*, since X% = 1 —Y does not match the outcome in any observation in the raw
dataset.

As shown in the proof of Lemma 2, the distribution of the number of matches between
X% and Y in the raw dataset increases in the first-order stochastic sense with the number of
matches between X® and Y in the noisy dataset. So, for any test threshold NN, the hacker
finds it optimal to propose a covariate a with Xf{ =Y, for every n.

Therefore, the only effect of lowering N from N is to increase the probability of the
hacker’s misguided policies passing the test. O]

A.8 Proof of Lemma 4

Proof. Let y € {0,1}" and ¢ € [0,1/2] be given. Let p, € A({0,1}"} be the distribution of
covariate realizations in the noisy dataset with ¢ level of noise. We have P[X* =y | X =
yl = 0=a™uw) ~ Also, for any = € {0,1}" so that y and x differ in k of the N coordinates,

1q(y)
we have P[X® =y | X* = 2] = % Note that
Mq(l') = Z M(’Z) . qD(z,x)<1 _ q>N7D(z,z)
z€{0,1}V

where D(z, z) is the number of coordinates where z differs from z. By the triangle inequality,
D(z,y) < D(z,2) + D(x,y) = D(z,x) + k. This shows for every z € {0,1},

PED1L = VI 3 P NP (L
So,

q . pis q
pa(w) = (7" > p(z) - qPEN (1 = )N TP = () a().
—4 2€{0,1}N —4
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This shows
(1—=g)™ - u(y) _
1q(y) thq(z) - (kq)k f1q()

A.9 Proof of Proposition 5

Proof. First, observe the maven will choose the covariate a € {a*, a"} whose noisy realization
X matches the outcome Y in more observations, regardless of . This is because the maven
learns two candidates aj,as € A and knows either (X* =Y, X =1-Y) or (X® =
1-Y, X" =Y), equally likely. The likelihood of the former is 1 -¢(N=m)Fm2(1 — g)mit(N=m2)
and the likelihood of the latter is 1 - g™ T(V=m2)(1 — g)(N=m)tm:2 “where my, msy count the
numbers of observations n where Xﬁl =Y, an XZQ = Y, respectively. Since ¢ € [0,1/2],
the first likelihood is larger if m; > mo, and vice versa. Also, maven’s proposal is a* if and
only if it passes the policymaker’s test. Thus we see that for any i, Vijaven(q) is the same as
when the observations are i.i.d.

Given the hacker’s behavior in Lemma 4, to prove V;,,..(0) < 0 it suffices to show that

for every y € {0,1}" and u, we have a% []P’[X“ =y | Xo= y]] < 0. For z,z € {0,1}", let
q=0

D(z,x) count the number of coordinates where z differs from z. Let p, € A({0,1}V} be the
distribution of covariate realizations in the noisy dataset with ¢ level of noise. We may write
(using the fact N > 2) that j,(y) = pu(y) - (1 = @) + p(2: D(z,y) = 1)- (1 =)V g+ f(¢?)
where f(q¢?) is a polynomial expression where every term contains at least the second power

of gq. Therefore, 6% [%} is:
q=0

N1 =)V pgy) = A= N - [-Nuy)(1 — N L+ p(z: D(z,y) =1) - (1 — )V + g(q))]

ulw) { (ia(0))?

where f(0) = 0. Evaluating, we get u(y) - —Nu(y)—[—Nét;z;)—ét(z:D(z,y)zl)] _ _u(z:éi((zy,g;))ﬂ)

Since p has full support, both the numerator and the denominator are strictly positive, so

%[P[X“:y\X“:y]LO<O. O

A.10 Proof of Proposition 6

In this proof we adopt the following notation: we write dy for the realized vector Y,,, d* for
the realized vector X2, for the ath covariate. In the noisy data, we use d* for the realization
of the noisy version of the a covariate. As in other results, it is without loss to analyze the
case where dy = 1, so the policy maker will only accept a proposal a if it satisfies that d* =
in the raw data.

First, we derive the posterior probability of d* = 1 given a realization of d* in the noisy
dataset, and the resulting behavior of the hacker and the maven. The n component of d* is
denoted Jz

Lemma 5. Suppose that d* satisfies 3., d% = k. We have P[d* = 1 | d*] = (1 — q)*(¢)N~*.
In particular, the hacker chooses some action a with d* = 1, and the maven chooses the
policy with the higher number of 1’s among d* and d* .
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Proof. Consider any d* with >on cifl = k. In the noisy dataset, for any ¢, every vector in
{0,1}" is equally likely. So the probability of the data for policy a having realization d® is
27N The probability of this realization in the noisy data and the realization being d* = 1
in Dis 27V - (1 — q)*(q)V~*. So the posterior probability is (1 — q)*(q)V*.

The hacker chooses an action @ as to maximize P[d* = 1 | d*]. The term (1 — ¢)*(q)N~*
is maximized when k = N, since 0 < ¢ < 1/2.

The maven sees vectors with kq, ko numbers of 1’s. The likelihood of the data given the
first action is the correct one is (1 — ¢)* (q)V =" - 27V (since all vectors are equally likely in
the noisy dataset conditional on Y = 1, for a # a*). This is larger than (1—gq)*2(g)V=*2.2=V
when ki > ko. O

Here is the expression for the principal’s expected payoff as a function of q.

Lemma 6. Let A,C ~ Binom(1 — q,N) and B ~ Binom(1/2, N), mutually independent.
The principal’s expected payoff after releasing a noisy dataset D(q) is

Ch(1—g)N 4 (1—h)- [Z P(A = k) <IP(B <)+ %IP(B — k) =2 N@C > )+ %IP’(C’ _ k)))] |

Proof. With probability h, the agent is a hacker. By Lemma 5, the hacker recommends a
policy @ with d* = 1, which has (1 — ¢)" chance of being accepted by the principal due to
d* =1.

With probability 1 — h, the agent is a maven. For the maven, J“* ~ Binom(1 — ¢, N)
and Y d% ~ Binom(1/2, N) are mdependent Whenever 3 d* > 3" d%, and with 50%
probablhty when 37 d* > 3 d¥, the maven recommend a* by Lemma 5, which will be
implemented by the principal.

When maven recommends a”, the principal only implements it (and gets utility -1) if
d” = 1. The probability of d* = 1 is 277, and the probability of a” being recommended
given d" =1 and 3, d¥ =k is P(C > k) + 1P(C = k), interpreting C' as the number of
coordinates that did not switch from d*" to d* . O

nn’

Now, with the formula for the principal’s expected payoff in place, we can evaluate the
derivative at ¢ = 0 to prove Proposition 6.

Proof. We apply the product rule. First consider %]P’(A = k)|4=0-

We have P(A = k) = (1 — q)k¢™VF (]IX) If Kk < N —1, then every term contains at least
¢? and its derivative evaluated at 0 is 0. For k = N, we get (1 — ¢)"¥ whose derivative in ¢ is
—N(1—q)¥~1, which is —N evaluated at 0. For k = N — 1, we get (1 — ¢)¥1¢- N, whose
derivative evaluated at 0 is V.

We now evaluate, for k= N — 1, N:

2

When k = N and ¢ = 0, P(B < N) = 1 — 2N, P(B

<IP’(B < k)+ 1IED(B =k) -2 N(P(C > k) + IP(C k))) o=
_ -N
P(C' = N) = 1. So we collect the term —N((1 —27V) 41 .27 :

N
N

I ~—
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When k=N —-land¢g=0,P(B<N—-1)=1-2"Y-N2V P(B=N—-1)= N2V,
P(C>N-1)=1,P(C = N)=0.So we collect

1 N
N(1—-2N_N2 N4 5N2—N —2 My =N1-2""2+ 5]).
Next, we consider terms of the form

P(A=Blyma- (BB < K) + 7B =) =2 ¥ B(C > k) + 73(C = b))l

Note that P(A = k)|,—0 = 0 for all k < N. The derivative of P(C' > k) is %}(1 —P[C <
k]) = —=NP[Bin(N — 1,1 — q) = k]. Evaluated at ¢ = 0, this is 0 except when &k = N — 1,
but in that case we have P(A = N — 1) = 0 when ¢ = 0.

The derivative of P(C' = k) evaluated at 0 is —N for k = N, N for k = N —1, 0 otherwise.
But P(A=N —1) =0if ¢ =0, so we collect 1- (—27V)3(=N).

Collecting the terms we have obtained, and adding up, we have that:

~N1-2""+ N1 -2""2+ %) + (—2_N)%(—N)

N, 27N
=N —1+2—N+1—2—N[2+5]+T

=N[27N — 27V (N - 1)27V71] = = N(N + 1)27V+D,

Overall, then, using the formula for the principal’s payoff from Lemma 6, the derivative
of payoffs evaluated at ¢ = 0 is

AN — (1 — h)N(N 4 1)2- N+,

the sign of which equals the sign of h/(1 — h) — (N + 1)2-(V+1), O

A.11 Proof of Proposition 7

Proof. Write Uk (q) for the principal’s expected utility from noise level ¢ with K covariates,
N observations, and h fraction of hackers. Write U(q) for the principal’s expected utility
in the model with the same parameters from Section 3.2.2, but a continuum of covariates
A = [0,1]. From Proposition 6, U’(0) > 0, therefore there exists some ¢’ > 0 so that
U(q') > U(0).

We argue that Ux(q¢') > U(q') for every finite K > 2. Note that a maven has the same
probability of proposing the true cause when A = [0, 1] and when K is any finite number.
This is because the maven’s inference problem is restricted to only X¢ and X¢ and the
presence of the other covariates does not matter. For the hacker’s problem, note that the
optimal behavior of the hacker is to propose the a that maximizes the number of observations
where X® matches the outcome variable Y in the noisy dataset. For a hacker who has no
private information about a*, such a covariate has the highest probability of being the true
cause and the highest probability of passing the test. The principal’s utility conditional on
the hacker passing the test when A = [0, 1] is -1, but this conditional utility is strictly larger
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than -1 when K is finite as the hacker has a positive probability of choosing the true cause.
Also, the probability of the hacker passing the test with proposal a only depends on the
number of observations where X® matches Y, and the probability is an increasing function
of the number of matches. When A = [0, 1], the hacker can always find a covariate that
matches Y in all IV observations in the noisy dataset, but the hacker is sometimes unable to
do so with a finite K. So overall, we must have Ux(q') > U(q') > U(0).

Finally, we show that Ux(0) — U(0) = h [2% - 1} + h, an expression that

converges to 0 as K — oo. Clearly, if noise level is 0 and A = [0, 1], then the principal’s
expected utility when facing the hacker is -1. For the case of a finite A, note X% is perfectly
correlated with Y. Each of the remaining K — 1 covariates has probability (1/2)" of being
perfectly correlated with Y, so the number of perfectly correlated variables is 1 + B, with
B ~ Binom((1/2)N, K — 1).

The hacker will recommend a perfectly correlated action at random, so the recommen-
dation is correct and yields of payoff of 1 with probability 1/(1 + b), and incorrect with
probability b/(1 4 b), for each realization b of B. Hence the expected payoff from facing a
hacker is E(;—g). Using the calculation of E(1/(1 4 B)) in Chao and Strawderman (1972),

E(ﬂ) - 2E(1_|_;B> 1= 2(1 - ]()1[(_ ") 1,

where p = (1/2)V.
Combining the fact that limg o (Ux(0) — U(0)) = 0 with Uk (¢') > U(q') > U(0), there
exists some K so that Ux(q') > U(q') > Uk(0) for every K > K. O

A.12 Proof of Proposition 8

Proof. First, there exists some ¢; > 0 so that for any noise level 0 < ¢ < ¢, the hacker
finds it optimal to report a covariate a that satisfies X? =Y, for every observation n in the
data. Such a covariate has probability 0 of being correct but the highest probability of being
implemented out of all covariates a € [0,1]. If the hacker instead reports @, the expected
payoft is 1 — 5. When ¢ = 0, the expected payoff from reporting a is 1 — wWypaven > 1 — 3 since
Whaven < B. The chance of such a covariate passing the policymaker’s test is continuous in
noise level, so there is some ¢; > 0 so that for every noise level 0 < ¢ < @, the hacker’s
optimal behavior involves reporting a covariate that perfectly matches the outcome in the
noisy data.

This means for 0 < ¢ < ¢y, the principal’s expected payoff with dissemination noise ¢
when facing a hacker is —Viaerer(q) = —(1 — @), with =V/_,..(q) = N(1 — )V 1.

For any 0 < ¢ < 1/2, after the maven observes the two covariates a;,ay € [0,1] (one of
them being a* and the other being a”, and there is some 3 probability that a* is the true
cause), it is optimal to either report the covariate a € {a1,as} that satisfies X =Y, for
a larger number of observations n, or to report @. To see that it is suboptimal to report
any other covariate, note the maven knows that the correct report is either a;, as, or &, and
assigns some posterior belief to each. At least one of the three option must have a posterior
belief that is at least 1/3, therefore the best option out of ay, as, or @ must give an expected
payoff of at least $wWmaven. On the other hand, reporting a covariate a € [0,1]\{a1, as} gives
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at most an expected payoff of 1 — wyaven. We have 3

Wmaven - §

We shéw that there is some > > 0 so that for any noise level 0 < ¢ < @, if in the noisy
dataset we have (i) X3¢ =Y, for all n, X% = 1—-Y, for all n, or (ii) X' =Y, for all n,
X2 =1-Y,, for all except one n; or (iii) X% =Y, for all except one n, X?> = 1-Y,, for all
n, then the maven reports a;. It suffices to show that for small enough ¢, in all three cases
the posterior probability of a; being the true cause exceeds 1/2 (so that the expected utility

from reporting a; exceeds that of reporting @). In case (i), this posterior probability is

0.56(1 — ¢q)*V
0.58(1 — ¢)2N +0.58¢2N + (1 — B)(1 — q)Ng"’

Wmaven > 1 — Wmaven DY the hypothesis

which converges to 1 as ¢ — 0. In case (ii), this posterior probability is

0.53(1 — ¢)*"1q
0.56(1 — q)?M~1q + 0.58¢2N -1 (1 — q) + (1 = B)gVN+1(1 — )N 1

Factoring out ¢ from the numerator and the denominator, this converges to 1 as ¢ — 0. In
case (iii), this posterior probability is

0.58(1 — ¢)*"'q
0.58(1 = ¢)*" g+ 0.58¢*N (1 = q) + (1 = B)g" (1 — )N

Factoring out ¢ from the numerator and the denominator, this converges to 1 as ¢ — 0.

The principal’s expected payoff from facing the maven is the probability that a true cause
exists in the data and the maven reports a*. This is because the maven either reports @ (so
the principal gets 0), or reports a covariate that is either the true cause or gets rejected by the
policymaker. When ¢ = 0, the principal’s expected payoff is 5. A lower bound on the prin-
cipal’s payoff for 0 < g < ¢ is L(q) := 3 - P[noise level ¢ flips 0 or 1 entries in X2, X9 1 <
n < NJ]. If a* is the true cause and the noise flips no more than 1 entry in X2, X% then
the maven sees one of cases (i), (ii), or (iii) in the noisy data, and by the argument before
the maven will report a* if ¢ < ¢y. Note this lower bound is equal to the principal’s expected
payoff when ¢ = 0.

We have

Lig)=8-(1-¢)* +2N-(1-¢)*" " -q.

The derivative is:
L(q)=8-[2N1—-¢* ' 42N - (1 - ) ' —2N- (2N —1)- (1 — ¢)*'"2 . ¢

so L'(0) = 0. We have that L(q) — Viaeker(q) is a lower bound on the principal’s expected
payoff with dissemination noise ¢ for all 0 < ¢ < min(gy, ¢2), and the bound is equal to the
expected payoff when ¢ = 0. We have L'(0) — V}/ 4. (0) > 0, therefore there exists some
0 < ¢ < min(qy, ¢2) so that the lower bound on payoff L(q) — Viacker(q) is strictly increasing
up to ¢g. This shows any noise level 0 < ¢ < ¢ is strictly better than zero noise for the
principal. O
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A.13 Proof of Proposition 9

Proof. Define 1 minus the state, f = 1 —b. Define u(q, f) as the principal’s expected utility
today from releasing testing set with noise level ¢ when the hacker’s best guess has 1 — f
chance of being a bait in the raw dataset. We are studying the Bellman equation

f(1=q) )
:q€(0,1/2
g+ -pa) 1OV
First we argue that v : [0,1] — R is monotone decreasing and convex. Let Cp([0,1])

denote the set of continuous bounded functions on [0, 1]. Recall that v is the unique fixed
point of the Bellman operator T : C([0,1]) — Cg(]0, 1]), with

o(f) = maxfulg, f) + 60 (

Tw(f) = max{u(g; b) + dw <<1 - b)<1b‘f_ g bq) tqe0,1/2]}.

is concave when ¢ < 1/2 (its second derivative is %)_

as the compo-

b
Observe that b = G757,

Then when w is convex and monotone decreasing, so is b — w (W{W ,
sition of a concave function and a monotone decreasing convex function is convex. Finally,
Tw is convex because f +— u(q, f) is convex (linear), and T'w thus is the pointwise maximum
of convex functions. So T'w is monotone decreasing. The fixed point v of T is the limit of
T"w, starting from any monotone decreasing and convex w € Cg([0,1]), so v is monotone
decreasing and convex.

Observe that f < #}qf_ﬁq = 0(q, f), so along any path (g, f;), f: is monotone
(weakly) increasing. In consequence, if f; is large enough, fir will be large enough for all
t'>t.

Recall that

u(g, f) =@ =Rh)[1—q]=h[f(1—q)+ (1 - f)d,
o)

Oqu(q, f) =—-1+2hf <0
as h < 1/2. Hence, we have that

w0, f) =1=h—hf>ul(q f) > =05(1—h)—h(1/2) = u(1/2,f).
Note that 6(1/2, f) = f, so that

1—h—1/2
U(f)ETé-

We proceed to show that ¢; < 1/2. Observe that if, for some f; it is optimal to set
@ = 1/2 then fi.1 = 0(q, f;) = fi, and it will remain optimal to set ¢;y; = 1/2. This
means that, if it is optimal to set ¢ = 1/2 for f, then v(f) = %. Since h < 1/2, u
is strictly decreasing in ¢. So there is a gain in decreasing ¢ from 1/2, which will result in

transitioning to f' = 0(q, f) > f = 6(1/2, f). But recall that # is a lower bound on v.
So v(f’") > v(f). Hence,

u(g, f) + ov(f") = [u(1/2, f) + 6u(f)] = 2hf = 1)(¢" = (1/2)) + 6(v(f") — v(f))
> (2hf = 1)(¢' = (1/2)) > 0.
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Now we show that for f large enough, but bounded away from 1, it is optimal to set
g = 0. Given that v is convex, it has a subdifferential: for any f there exists dv(f) € R with
the property that v(f’) > v(f) + ov(f)(f — f) for all f’. Since v is monotone decreasing,
Ov(f) < 0. Moreover, we can choose a subdifferential for each f so that f — Ju(f) is
monotone (weakly) increasing.

Let ¢’ < q. Suppose that ¢ results in f' = 0(q, f) and ¢’ in f” = 0(q¢’, f). The function 6
is twice differentiable, with derivatives

- 21— 1—2))
08 1) = Fi ) vat — pp ) = g e e

Hence, ¢ — 0(q, f) is concave when f > 1/2.
Now we have:

u(q', f) + ov(f") = [ulg, f) + ov(f")]

(2hf = 1)(d' = q) + 6(v(f") = v(f"))

> (2hf = 1)(¢" — q) +00v(f)(f" = f')
> (2hf — 1)(¢ — q) + 60v(f')0,0(q, f)(d" — q)

o v ! f(l B f) o
> (1 2h)+5? (f>[f(1_q)+<1_f)q]2 (¢—4),

where the first inequality uses the definition of subdifferential, and the second the concavity
of 0, so that f” — f' < 90(q, f)(¢' — ¢"), and the fact that Jv(f’) < 0. The last inequality
uses that f < 1. Recall that 1 — 2h > 0.

For f close enough to 1, and since dv(f’) < 0 are monotone increasing and therefore
bounded below, we can make A as close to zero as desired. Thus, for f < 1 close to 1, we
have that u(¢', f) + 0v(f") — u(q, f) + ov(f’) > 0 when ¢’ < ¢q. Hence the solution will be to
set ¢ = 0.

To finish the proof we show that f; 7 1 and hence there is t* at which f; is large enough
that it is optimal to set ¢, = 0.

Suppose that f; T f* < 1. Note that if f" = 0(q, f) then ¢ = WM Thus (using

K for the terms that do not depend on ¢ or f)
fe(L— fiy1) 1 1
wlgp, f2) = K—hfi—(1—2h | = K—hf—(1—2hf")= = K—=.
e ) = K2 ) | 6+ (- R o2y = s

1=
On the other hand, if the principal sets ¢; = 0 it gets u(0, f;) = K — hf;, and transitions

to 1 = 6(0, f;). Hence the value of setting ¢ = 0 at ¢ is

/ _1
Then for any e there is ¢ such that v(f;) = > ., 0" Tu(qy, frr) < B2 he
3 )

u(0,1) K—h K-h K-1/2
1—5_K hft+51—5>1—5> 1—6

as fy < f*<1land h < 1/2.

U(O, ft) + (5
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_1
If_ £ t+e< %. Then for t large enough we have

Now choose ¢ such that

u(0,1)
1—0"

v(fe) <u(0, fr) +6

a contradiction because setting ¢, = 0 gives the principal a higher payoff than in the optimal
path. O
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