
Data-Driven Vulnerability Detection and Repair in Java Code
Ying Zhang, Mahir Kabir, Ya Xiao, Danfeng (Daphne) Yao, Na Meng

Computer Science, Virginia Tech

{yingzhang,mdmahirasefk,yax99,danfeng,nm8247}@vt.edu

ABSTRACT

Java platform provides various APIs to facilitate secure coding.

However, correctly using security APIs is usually challenging for

developers who lack cyber security training. Prior work shows that

many developers misuse security APIs; such misuses can introduce

vulnerabilities into software, void security protections, and present

security exploits to hackers. To eliminate such API-related vulnera-

bilities, this paper presents Seader—our new approach that detects

and repairs security API misuses. Given an exemplar insecure code

snippet and its secure counterpart, Seader compares the snippets

and conducts data dependence analysis to infer the security API

misuse templates and corresponding fixing operations. Based on

the inferred information, given a program, Seader performs inter-

procedural static analysis to search for any security API misuse and

to propose customized fixing suggestions for those vulnerabilities.

To evaluate Seader, we applied it to 25 <insecure, secure> code

pairs, and Seader successfully inferred 18 unique API misuse tem-

plates and related fixes. With these vulnerability repair patterns, we

further applied Seader to 10 open-source projects that contain in

total 32 known vulnerabilities. Our experiment shows that Seader

detected vulnerabilities with 100% precision, 84% recall, and 91%

accuracy. Additionally, we applied Seader to 100 Apache open-

source projects and detected 988 vulnerabilities; Seader always

customized repair suggestions correctly. Based on Seader’s outputs,

we filed 60 pull requests. Up till now, developers of 18 projects have

offered positive feedbacks on Seader’s suggestions. Our results

indicate that Seader can effectively help developers detect and

fix security API misuses. Whereas prior work either detects API

misuses or suggests simple fixes, Seader is the first tool to do both

for nontrivial vulnerability repairs.

KEYWORDS

vulnerability detection, vulnerability repair, inter-procedural

1 INTRODUCTION

Java platform provides libraries (e.g., Java Cryptography Archi-

tecture (JCA) [22] and Java Secure Socket Extension [5]) to ease

developers’ secure software development (e.g., implementing key

generation and secure communication). However, these libraries

are not easy to use for two reasons. First, some APIs have overly

complicated usage protocols that are poorly documented [19, 39].

Second, developers lack the necessary cyber security training for se-

cure coding [2, 3, 37]. Meanwhile, prior work shows that developers

misused security APIs [15, 42], and introduced vulnerabilities when

building security functionalities [14, 18]. For instance, Fischer et

al. found that the security API misuses posted on StackOverflow [6]

were copied and pasted into 196,403 Android applications available

on Google Play [15]. Rahaman et al. revealed similar API misuses in

39 high-quality Apache projects [42]. Fahl et al. [14] and Georgiev

et al. [18] separately showed that such API-related vulnerabilities

could be exploited by hackers to steal data (e.g., user credentials).

Existing tools provide insufficient support to help developers

eliminate security API misuses. Specifically, some tools identify

API misuses based on either hardcoded rules, rules specified with

a domain-specific language, or machine learning [13, 15, 16, 26,

29, 42]. However, these tools cannot be easily extended to reveal

new vulnerabilities, neither can they suggest any security repair.

General-purpose program repair tools rely on automatic testing

to reveal bugs, and only suggest trivial fixes (e.g., single-line edits)

in very limited cases [11, 25, 30, 41]. These tools cannot repair

security API misuses because (1) vulnerabilities seldom fail tests,

and (2) some security patches involve nontrivial edits like overriding

an interface method. To design a better approach that overcomes

the above-mentioned limitations, we need to solve two technical

challenges. First, the new approach should accurately detect API

misuses and suggest fixes. Second, the approach should be flexibly

extensible to handle new vulnerabilities.

Secure	
code	(S)	

Insecure	
code	(I)	

Change	
Recognition	

Pattern	
Generalization	 JSON	

Program	
(P)	

Template	
Matching	

Fix	
Customization	

Suggested	
Secure	
Code	

Phase	I:	Pattern	Inference	

Phase	II:	Pattern	Application	

Figure 1: The overview of Seader

In this paper, we present our new approach Seader, which de-

tects the vulnerabilities caused by security APImisuses and suggests

repairs. As shown in Figure 1, there are two phases in Seader: pat-

tern inference and pattern application. In the first phase, suppose

that a domain expert (e.g., security researcher) provides

• I—insecure code with certain security API misuse, and

• S—the secure counterpart showing the correct API usage.

Seader compares the two code snippets and detects program changes

that can transform I to S. Next, based on those changes, Seader

derives a vulnerability repair pattern from both snippets. Each

pattern consists of two parts: (i) a vulnerable code template to-

gether with matching-related information, and (ii) the abstract fix.

Seader stores all inferred patterns into a JSON file. In Phase II,

given a program P , Seader loads all patterns from the JSON file,

and searches for code matching any template. For each code match,

Seader concretizes the corresponding abstract fix, and suggests

code replacements to developers.

Additionally, security researchers have summarized a number of

typical API misuse patterns related to Java security libraries [15, 42].

Based on our experience with example definition for these patterns,

we realized that some patterns (e.g., multiple secure options for a

parameter) cannot be easily described with plain Java code exam-

ples. Therefore, we also defined an example definition library (EDL),

ar
X

iv
:2

10
2.

06
99

4v
1

 [
cs

.C
R

]
 1

3
Fe

b
20

21

which provides APIs for security experts to specify examples, and

for Seader to specialize pattern inference in certain scenarios.

For evaluation, we crafted 25 <insecure, secure> code pairs based

on some known API misuse patterns summarized by prior research.

After Seader inferred patterns from those pairs, we further applied

Seader to two program data sets to evaluate its effectiveness in

terms of vulnerability detection and repair suggestion.

Specifically, the first data set contains 10 Apache open-source

projects, with 32 real vulnerabilities manually identified in the JAR

files. With this data set, we observed Seader to detect vulnerabili-

ties with 100% precision, 84% recall, and 91% accuracy. The second

data set contains 100 Apache open-source projects. Seader found

988 vulnerabilities in them and proposed corresponding repair sug-

gestions. We manually checked 100 repair suggestions and found

them to be correctly customized. Finally, we filed 59 pull requests

based on Seader’s reports for 59 vulnerable Java classes and sought

for developers’ opinions. Up till now, the maintainers of 14 vulner-

able classes have confirmed the reported vulnerabilities, and 6 of

them have taken actions to fix or document the vulnerabilities.

To sum up, we made the following contributions in this paper:

• We designed and implemented Seader—a data-driven ap-

proach that infers vulnerability repair patterns from <inse-

cure, secure> code examples, and applies those patterns to

detect and fix security API misuses.

• For pattern inference, Seader provides a software library—

EDL—for users to adopt so that they can define examples for

some tricky scenarios. Our experiment with 25 code pairs

shows that Seader always infers patterns correctly from

<insecure, secure> code examples.

• In terms of vulnerability detection, our evaluation with real

vulnerabilities from open-source projects shows that Seader

worked as effectively as or even better than the state-of-the-

art tool—CryptoGuard—in 8 of the 10 projects.

• In terms of vulnerability repair, our manual inspection based

on another data set shows that the repairing suggestions

generated by Seader are correct. Interestingly, developers

have mixed opinions on Seader’s repair suggestions.

Seader has the data-driven nature by inferring vulnerability repair

patterns from code examples, which functionality ensures the ap-

proach extensibility when new API misuses are revealed. Seader

can accurately detect vulnerabilities and suggest meaningful fixes,

showing great potential of helping eliminate API-related vulnera-

bilities.

2 A MOTIVATING EXAMPLE

This section overviews our approach with a set of code examples.

Prior research shows that the security of symmetric encryption

schemes depends on the secrecy of any shared key [13]. Thus,

developers should not generate secret keys from constant values

hardcoded in software applications [15]. Suppose that a security

expert Alex wants to detect and fix the vulnerable code that cre-

ates a secret key from a constant value. To achieve the goal with

Seader, Alex needs to craft (1) an insecure code example showing

the API misuse, and (2) a secure example to demonstrate the correct

API usage. As shown in Figure 2, the insecure code I invokes the
constructor of SecretKeySpec by passing in a constant byte array

(i.e., StringLiterals.CONSTANTS.getBytes()) as the first parameter. On

the other hand, the secure code S invokes the same constructor by

sending in keyBytes instead, which parameter is created based on a

randomly generated number (see lines 1-4).

Insecure code (I)
1 Sec r e tKey key = new Sec r e tKeySpec (S t r i n g L i t e r a l s . CONSTANT

. g e tBy t e s () , "AES ") ;

Secure code (S)
1 SecureRandom random = new SecureRandom () ;

2 S t r i n g d e f au l tK ey = S t r i n g . va lueOf (random . n e x t I n t ()) ;

3 byte [] keyBytes = d e f au l tK ey . g e tBy t e s () ;

4 keyBytes = Arrays . copyOf (keyBytes , 2 4) ;

5 Sec r e tKey key = new Sec r e tKeySpec (keyBytes , "AES ") ;

Figure 2: A pair of examples to show the vulnerability and

repair relevant to secret key creation

Vulnerable code template (T)

1 Sec r e tKey $v_0 = new Sec r e tKeySpec (S t r i n g L i t e r a l s .

CONSTANT . g e tBy t e s () , "AES ") ;

Matching-related data:

critical API: javax.crypto.spec.SecretKeySpec.SecretKeySpec(byte[], String)

other security APIs: {}

Abstract fix (F)

1 SecureRandom $v_1 = new SecureRandom () ;

2 S t r i n g $v_2 = S t r i n g . va lueOf ($v_1 . n e x t I n t ()) ;

3 byte [] $v_3 = $v_2 . g e tBy t e s () ;

4 $v_3 = Arrays . copyOf ($v_3 , 2 4) ;

5 Sec r e tKey $v_0 = new Sec r e tKeySpec ($v_3 , "AES ") ;

Figure 3: The pattern inferred from the code pair in Figure 2

Taking the two examples as input, Seader generates abstract

syntax trees (ASTs) and compares them for any code change. Specifi-

cally, five operations are detected: one expression update (StringLiterals.

CONSTANT.getBytes() replaced by keyBytes), and four statement inser-

tions. Next, based on the updated expression in I , Seader conducts

data dependency analysis to reveal any security API that uses the

expression, and treats it as a critical API. Such critical APIs are

important for Seader to later reveal similar vulnerabilities in other

codebases. Afterwards, Seader generalizes a vulnerability repair

pattern from the examples by abstracting concrete variable names.

As shown in Figure 3, the generalized pattern has two parts: (i)

the vulnerability template (T) together with matching-related data

and (ii) an abstract fix (F). Such pattern generalization ensures the

inferred program transformation to be applicable to codebases that

use different variable identifiers from the given examples.

Listing 1: A simplified version of P
1 public c l a s s CEncryptor {

2 pr ivate char [] p a s sPh r a s e ;

3 pr ivate S t r i n g a l g = "AES " ;

4 public CEncryptor (S t r i n g pa s sPh r a s e) {

5 th i s . p a s sPh r a s e = pa s sPh r a s e . toCharArray () ;

6 }

7 public Re s u l t enc ryp t (byte [] p l a i n) throws Excep t i on {

8 Sec r e tKey s e c r e t = new Sec r e tKeySpec (new S t r i n g (

pa s sPh r a s e) . g e tBy t e s () , a l g) ;

9 . . .

10 }

11 public c l a s s Main {

12 public s t a t i c void main (S t r i n g [] a r g s)

13 CEncryptor ae s0 = new CEncryptor (" password ") ;

14 ae s0 . enc ryp t ((byte []) a r g s [0]) ;

15 . . .

16 }

2

With a pattern inferred from the provided code pair, Alex can fur-

ther apply Seader to an arbitrary program P to detect and resolve

any occurrence of the described vulnerability. In particular, given a

program whose simplified version is shown in Listing 1, Seader

first scans for any invocation of the critical API SecretKeySpec(...).

If no such invocation exists, Seader concludes that P does not

have the above-mentioned vulnerability; otherwise, if the API is

invoked (see line 8 in Listing 1), Seader further searches for any

code match for the template in Figure 3. Specifically, the template

matching process conducts inter-procedural analysis and checks

for two conditions:

C1: Does the API call have the first parameter derive from a

constant?

C2: Does the API call have the second parameter match "AES"?

If any invocation of SecretKeySpec(...) satisfies both conditions,

Seader concludes that the code has the above-mentioned vulnera-

bility. Notice that if we simply check line 8 of Listing 1, it seems that

neither new String(passPhrase).getBytes() nor alg satisfies any con-

dition. Thanks to the usage of inter-procedural analysis, Seader

is able to conduct backward slicing to trace how both parame-

ters are initialized before their current usage. With more details,

because alg is a private field of CEncryptor, whose value is initial-

ized on line 3 with "AES", Seader decides that C2 is satisfied. Sim-

ilarly, passPhrase is another field whose value is initialized with

a parameter of the constructor CEncryptor(...) (lines 4-6). When

CEncryptor(...) is called with parameter "password" before the invo-

cation of SecretKeySpec(...) (lines 7-14), C1 is satisfied. Therefore,

Seader concludes that line 8 matches the template; it thus matches

concrete variable secret with the template variable $v_0.

Listing 2: A customized fix for P suggested by Seader

1 SecureRandom $v_1 = new SecureRandom () ;

2 S t r i n g $v_2 = S t r i n g . va lueOf ($v_1 . n e x t I n t ()) ;

3 byte [] $v_3 = $v_2 . g e tBy t e s () ;

4 $v_3 = Arrays . copyOf ($v_3 , 2 4) ;

5 Sec r e tKey s e c r e t = new Sec r e tKeySpec ($v_3 , "AES ") ;

Based on the found code match, Seader customizes the abstract

fix shown in Figure 3 by replacing the abstract variable $v_0 with

concrete variable secret. Seader then suggests the code snippet

shown in Listing 2 to replace line 8 of Listing 1. In the suggested

fix, a SecureRandom instance is first initialized to randomly generate

a string value (lines 1-2 in Listing 2). Next, the string is converted

to a byte array (line 3), in order to match the data type of the first

parameter of SecretKeySpec(byte[], String). Afterwards, the byte

array is further converted to a 24-byte array (line 4), because the

AES algorithm is capable of using cryptographic keys of 16, 24, or

32 bytes (i.e., 128, 192, or 256 bits) [40]. Here, for simplicity, we

randomly pick 24 bytes to create a well-formatted variable keyBytes.

Finally, keyBytes and "AES" are passed to invoke the critical API.

3 APPROACH

There are two phases in Seader (see Figure 1). In this section, we

first summarize the steps in each phase and then describe each

step in detail (Section 3.1-Section 3.4). Next, we introduce EDL—

the software library we created—to facilitate example definition by

security experts (Section 3.5).

Phase I: Pattern Inference

• Given an <𝐼 , 𝑆> example pair, Seader builds an AST for each

example; it then compares the ASTs to infer an edit script

that can transform I to S. We denote the edit script with

𝐸 = {𝑜𝑝1, 𝑜𝑝2, . . . , 𝑜𝑝𝑛}.
• For any update 𝑢 ∈ 𝐸 that changes an expression 𝑒 to 𝑒 ′,
Seader analyzes data dependencies to locate the security

API invoked with 𝑒 or 𝑒 ′, and treats the API critical. If there

is no update operation in 𝐸, Seader searches for any over-

ridden security API or deleted API call. Next, Seader infers

a vulnerability repair pattern and stores it in a JSON file.

Phase II: Pattern Application

• Given a program 𝑃 , for each pattern 𝑃𝑎𝑡 =< 𝑇, 𝐹 > in the

JSON file, Seader searches for any code invoking the critical

API. If the API is invoked, Seader further performs slic-

ing based on the API invocation to locate other statements

matching the remaining part of 𝑇 .

• If 𝑇 is fully matched by a code snippet, Seader extracts the

mappings between abstract variables and concrete variables,

and then customizes the abstract fix 𝐹 by replacing abstract

variables with concrete ones. In this way, Seader reports a

vulnerability and suggests a customized fix.

3.1 Change Recognition

Given an <𝐼 , 𝑆> example pair, Seader performs syntactic program

differencing to identify the edit operation(s) that can change 𝐼 to 𝑆 .

This step consists of two parts: statement-level change recognition

and expression-level change recognition.

3.1.1 Statement-level change recognition. Seader first adopts Java-

Parser [21] to generate ASTs for 𝐼 and 𝑆 . Next, Seader compares

statement-level AST nodes between the trees to generate an AST

edit script that may contain three types of edit operations:

• delete (Node 𝑎): Delete node 𝑎.

• insert (Node 𝑎, Node 𝑏, int 𝑘): Insert node 𝑎 and position

it as the (𝑘 + 1)𝑡ℎ child of node 𝑏.

• update (Node 𝑎, Node 𝑏): Replace 𝑎 with 𝑏. This operation

changes 𝑎’s content.

Specifically, when comparing any two statements 𝑠𝑖 ∈ 𝐼 and 𝑠𝑠 ∈ 𝑆 ,

Seader checks whether the code string of 𝑠𝑖 exactly matches that

of 𝑠 𝑗 ; if so, Seader considers 𝑠𝑖 unchanged while 𝐼 is transformed

to 𝑆 . Otherwise, if the code strings of 𝑠𝑖 and 𝑠 𝑗 are different, Seader

normalizes both statements by replacing concrete variables (e.g.,

key) with abstract variables (e.g., $v_0), and replacing constant val-

ues (e.g., "AES") with abstract constants (e.g., $c_0). We denote the

normalized representations as 𝑛𝑖 and 𝑛𝑠 . Next, Seader computes

the Levenshtein edit distance [28] between 𝑛𝑖 and 𝑛𝑠 , and computes

the similarity score [17] with:

𝑠𝑖𝑚 = 1 − 𝑒𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ(𝑛𝑖 , 𝑛𝑠)
(1)

The similarity score 𝑠𝑖𝑚 is within [0, 1]. When 𝑠𝑖𝑚 = 1, 𝑛𝑖 and 𝑛 𝑗
are identical. We set a threshold 𝑡ℎ = 0.8 such that if 𝑠𝑖𝑚 >= 𝑡ℎ, 𝑛𝑖
and 𝑛 𝑗 are considered to be similar enough to match each other. In

this way, Seader can detect updated statements and infer update

operation(s). Compared with string-basedmatch, the normalization-

based match is more flexible, because it can match any two state-

ments that have similar syntactic structures but distinct variables

3

SecretKey	key	=	new	SecretKeySpec(StringLiterals.CONSTANT.getBytes(),	"AES");	

statement	(ExpressionStmt)	

variable	(VariableDeclarator)	

initializer	(ObjectCreationExpr)	

type	(ClassOrInterfaceType)	 arguments	

argument	
(NameExpr)	

argument	
(StringLiteralExpr)	

SecretKey	key	=	new	SecretKeySpec(keyBytes,	"AES");	

… …	

… …	

… …	 … …	

… …	

statement	(ExpressionStmt)	

variable	(VariableDeclarator)	

initializer	(ObjectCreationExpr)	

type	(ClassOrInterfaceType)	 arguments	

argument	
(MethodCallExpr)	

argument	
(StringLiteralExpr)	

… …	

… …	

… …	 … …	

… …	

Figure 4: The simplified ASTs of the two statements related to a statement-level update operation

or constants. Finally, if a statement 𝑠𝑖 ∈ 𝐼 does not find a match in

𝑆 , Seader infers a delete operation; if 𝑠𝑠 ∈ 𝑆 is unmatched, Seader

infers an insert operation.

3.1.2 Expression-level change recognition. When 𝑠𝑖 is updated to

𝑠𝑠 , there is usually a portion of 𝑠𝑖 changed. The finer-granularity

edit in the statement (e.g., expression replacement) can help us

better interpret changes and conduct pattern generalization (see

Section 3.2). Therefore, for each statement-level update, Seader fur-

ther identifies any finer-granularity edit by conducting top-down

matching between the ASTs of 𝑠𝑖 and 𝑠𝑠 . Specifically, while travers-

ing both trees in a preorder manner, Seader compares roots and

inner nodes based on the AST node types and compares leaf nodes

based on the code content. Such node traversal and comparison

continue until all unmatched subtrees or leaf nodes are found.

In particular, for the example shown in Section 2, after Seader

performs statement-level change recognition, it reveals one state-

ment update together with four statement insertions. Figure 4 il-

lustrates the simplified ASTs of the statements involved in the

update. By comparing the nodes of both ASTs in a top-down man-

ner, Seader detects that the first arguments sent to the constructor

function differ (e.g., MethodCallExpr vs. NameExpr). Therefore, Seader

creates a finer-granularity operation to replace the statement-level

update: update (StringLiterals.CONSTANT.getBytes(), keyBytes).

3.2 Pattern Generalization

When security experts present an <𝐼 , 𝑆> example pair to demon-

strate any API misuse, we expect that they provide the minimum

code snippets to show only one vulnerability and its repair. Addi-

tionally, based on our experience with security API misuses, each

vulnerability is usually caused by the misuse of one security API.

Therefore, to infer a general vulnerability-repair pattern, we always

analyze the given examples to answer two questions:

1. What is the security API whose misuse is responsible for the

vulnerability (i.e., critical API)?

2. What is the relationship between the critical API and its

surrounding code?

3.2.1 Task 1: Identifying the critical API. Starting with the edit

script 𝐸 created in Section 3.1, Seader looks for any update opera-

tion 𝑢𝑝𝑑𝑎𝑡𝑒 (𝑒, 𝑒 ′). If there is such an operation, Seader searches

for the security API whose invocation is data-dependent on 𝑒 or

𝑒 ′, and considers the API to be critical. For the example shown in

Figure 4, the critical API is SecretKeySpec(byte[], String) because it

Insecure code (I)
1 void t e s t (in t i t e r a t i o n s) {

2 byte [] s a l t = new byte [4] ;

3 A lgor i thmParamete rSpec paramSpec = new PBEParameterSpec

(s a l t , i t e r a t i o n s) ;

4 }

Secure code (S)
1 void t e s t (in t i t e r a t i o n s) {

2 byte [] s a l t = new byte [8] ;

3 A lgor i thmParamete rSpec paramSpec = new PBEParameterSpec

(s a l t , i t e r a t i o n s) ;

4 }

Figure 5: A pair of examples where the updated constant

is indirectly depended on by the invocation of critical API

PBEParameterSpec(byte[], int)

is invoked with the updated expression as the first argument. Simi-

larly, Figure 5 presents another example where a numeric literal is

updated from 4 to 8. With data dependency analysis, Seader reveals

that the constants are used to define variable salt, while salt is used

as an argument when PBEParameterSpec(...) is invoked. Therefore,

the method invocation depends on the updated expression, and the

security API PBEParameterSpec(byte[], int) is considered critical.

If there is no update operation in 𝐸, Seader searches for any over-

ridden security API that encloses all edit operations, and considers

the overridden API to be critical. Take the code pair shown in Fig-

ure 6 as an example. By comparing 𝐼 with 𝑆 , Seader can identify one

statement deletion and multiple statement insertions. As there is

no update operation and all edit operations are enclosed by an over-

ridden method verify(String, SSLSession) (indicated by @Override),

Seader further locates the interface or super class declaring the

method (e.g., HostnameVerifier). If the overridden method together

with the interface/super class matches any known security API,

Seader concludes the overridden method to be a critical API.

Lastly, if no update operation or overridden security API is iden-

tified, Seader checks whether there is any deletion of security API

call in 𝐸; if so, the API is critical. To facilitate later template match-

ing (Section 3.3), for each identified critical API, Seader records the

method binding information (e.g., javax.crypto.spec.SecretKeySpec.

SecretKeySpec(byte[], String)).

3.2.2 Task 2: Extracting relationship between the critical API and its
surrounding code. When a vulnerable code example contains multi-

ple statements (e.g., Figure 5 and Figure 6), we were curious how

4

Insecure code (I)
1 public c l a s s Ho s t V e r i f i e r implements Hos tnameVe r i f i e r {

2 @Override

3 public boolean v e r i f y (S t r i n g hostname , SSLSe s s i on

s s l S e s s i o n) {

4 return true ;

5 } }

Secure code (S)
1 public c l a s s Ho s t V e r i f i e r implements Hos tnameVe r i f i e r {

2 @Override

3 public boolean v e r i f y (S t r i n g hostname , SSLSe s s i on

s s l S e s s i o n) {

4 / / P l e a s e change " example . com " as ne ed ed

5 i f (" example . com " . e qu a l s (hostname)) {

6 return true ;

7 }

8 Hos tnameVe r i f i e r hv = HttpsURLConnect ion .

g e tD e f a u l tHo s t n ameVe r i f i e r () ;

9 return hv . v e r i f y (hostname , s s l S e s s i o n) ;

10 } }

Figure 6: A pair of examples from which Seader infers the

critical API to be an overridden method

the critical API invocation is related to other statements. On one ex-

treme, if the invocation is irrelevant to all surrounding statements,

we should not include any surrounding code into the generalized

pattern. On the other extreme, if the invocation is related to all

surrounding code, we should take all code into account when in-

ferring a vulnerability-repair pattern. Thus, this task intends to

decide (1) which statements of 𝐼 to include into the vulnerable code

template, (2) what other security API(s) whose invocations should

be analyzed for template matching (see Section 3.3), and (3) which

statements of 𝑆 to include into the abstract fix.

Specifically, Seader performs intra-procedural data dependency

analysis. If any statement defines a variable value that is (in)directly

used by the critical API invocation, the statement is extracted as

edit-relevant context. Seader relies on such context to characterize

the demonstrated vulnerability. For the insecure code 𝐼 shown in

Figure 5, because the API call (line 3) data-depends on variable

salt, lines 2-3 are extracted as the context. Additionally, when the

critical API is an overridden method, its code implementation in 𝐼 is

considered as edit-relevant context (see lines 3-5 in Figure 6). Based

on the extracted edit-relevant context, Seader abstracts all variables

to derive a vulnerable code template 𝑇 , and records mappings 𝑀

between abstract and concrete variables.

In addition to the critical API, Seader also extracts binding

information for any other security API invoked by the context

code. Compared with edit-relevant context, these APIs provide

more succinct hints of code vulnerabilities. In our later template

matching process, these APIs can serve as “anchors” for Seader to

efficiently decide whether a program slice invokes all relevant APIs

or is worth further comparison with the template 𝑇 .

To determine the fix-relevant code in secure version 𝑆 , Seader

identifies any unchanged code in the edit-relevant context, the

inserted statements, and the new version of any updated statement.

For the secure code 𝑆 shown in Figure 5, lines 2-3 are fix-relevant,

because line 2 is the new version of an updated statement and line

3 is unchanged context code. Similarly, for the secure code 𝑆 shown

in Figure 6, lines 3-10 are fix-relevant, because lines 3 and 10 present

the critical API while lines 4-9 are inserted statements. Based on

the above-mentioned variable mappings 𝑀 and fix-related code,

Seader further abstracts variables used in the fix-related code to

derive an abstract fix 𝐹 . Seader ensures that the same concrete

variables used in 𝐼 and 𝑆 are always consistently mapped to the

same abstract variables recorded in𝑀 .

To sum up, for each given <𝐼 , 𝑆> pair, Seader produces a pattern

𝑃𝑎𝑡 =< 𝑇, 𝐹 >, which consists of a vulnerable code template 𝑇 ,

an abstract fix 𝐹 , and metadata to describe 𝑇 (i.e., bindings of the

critical API and other invoked security APIs).

Algorithm 1:Matching Program P to template T

Input: P, T, D /* program, template, and related metadata
*/

Output:Matched /* a set of code matches from P to T */
Candi := ∅, Matched := ∅;
/* 1. search for matches of the critical API */

foreach code line x ∈ P do

if x invokes D(critical) || x declares D(critical) then

Candi := Candi ∪ x;

end

end

foreach x ∈Candi do
if x invokes D(critical) then

/* 2(a). For API call, do program slicing and

look for matches of other security APIs */
Sli = getBackwardSlice(x);

if (Sli has all matches for D(other)) == false then

continue;

end

/* 3. check whether the data dependencies
between security APIs in T match those in
Sli */

if dataDependConsist(T, Sli) then

Matched:=Matched ∪ {Sli, mappings};

end

end

else

/* 2(b). For API overriding, check the code */

if contentMatch(code(P, x), T) then

Matched := Matched ∪ {code(P, x), mappings};

end

end

end

3.3 Template Matching

Given a program 𝑃 , Seader uses a static analysis framework—

WALA [7]—to analyze the JAR file (i.e., byte code) of 𝑃 . As shown

in Algorithm 1, to find any code in 𝑃 that matches the template 𝑇 ,

Seader first searches for the critical API (i.e., invocation or method

reimplementation). If the critical API does not exist, Seader con-

cludes that there is nomatch for𝑇 . Next, if the critical API is invoked

at least once, for each invocation, Seader conducts inter-procedural

backward slicing to retrieve all code 𝑆𝑙𝑖 on which the API call is

either control- or data- dependent (i.e., getBackwardSlice(x)). When

𝑇 invokes one or more security APIs in addition to the critical API,

Seader further examines whether 𝑆𝑙𝑖 contains matches for those

extra APIs; if not, the matching trial fails. Next, Seader checks

5

whether the matched code in 𝑆𝑙𝑖 preserves the data dependencies

manifested by 𝑇 (i.e., dataDependConsist(T, Sli). If those data depen-

dencies also match, Seader reveals a vulnerability.

Alternatively, if the critical API is reimplemented, for each reim-

plementation, Seader compares the code content against 𝑇 , and

reports a vulnerability if they match. At the end of this step, if any

vulnerability is detected, Seader presents the line number where

the critical API is invoked or is declared as an overridden method,

and shows related matching details. The matching details include

both code matches and abstract-concrete variable mappings.

3.4 Fix Customization

This step involves two types of customization: variable customiza-

tion and edit customization. To customize variables, based on the

matching details mentioned in Section 3.3, Seader replaces abstract

variables in 𝐹 with the corresponding concrete ones. We denote this

customized version as 𝐹𝑐 . For edit customization, Seader suggests

code replacements in two distinct ways depeding on the inferred

edit operations mentioned in Section 3.1. Specifically, if there is

only one update operation inferred, Seader simply recommends an

alternative expression to replace the original expression. Otherwise,

Seader presents 𝐹𝑐 for developers to consider.

Notice that Seader does not directly modify 𝑃 to automatically

repair any vulnerability for two reasons. First, when template𝑇 con-

tains multiple statements, it is possible that the corresponding code

match involves statements from multiple method bodies. Automat-

ically editing those statements can be risky and can unpredictably

impact program semantics. Second, some fixes require for develop-

ers’ further customization based on their software environments

(e.g., network configurations, file systems, and security infrastruc-

tures). As implied by Figure 6, the abstract fix derived from 𝑆 will

contain a comment "//Please change ’example.com’ as needed", so will

the customized fix by Seader. This comment instructs developers

to replace the standard hostname based on their needs.

3.5 Specialized Handling for Certain Patterns

We believe that by crafting <𝐼 , 𝑆> code pairs, security researchers

can intuitively demonstrate the misuse and correct usage of security

APIs. However, we also noticed some scenarios where plain Java ex-

amples cannot effectively indicate the vulnerability-repair patterns.

To solve this problem, we defined a Java library named EDL for

user adoption and invented special ways of example definition. Cur-

rently, EDL has two classes: StringLiterals and IntLiterals, which

provide APIs to help specify constant-related examples. With the

library support, Seader allows users to specially define examples

for three typical scenarios:

Scenario 1: A pattern involves the usage of any constant value

instead of a particular constant. Plain examples only show the

usage of particular constant values, but cannot generally represent

the constant concept. Consider the vulnerability introduced in Sec-

tion 2. Without using StringLiterals.CONSTANT, a domain expert has

to define a plain example to show the API misuse, such as

SecretKey key = new SecretKeySpec("ABCDE".getBytes(), "AES");

Seader is designed to preserve all string literals from 𝐼 when gen-

eralizing template 𝑇 , and to look for those values when matching

code with 𝑇 . Consequently, given the above-mentioned example,

Seader will inevitably embed "ABCDE" into the inferred template. To

help users avoid such unwanted literal values in 𝑇 , EDL provides

StringLiterals.CONSTANT and IntLiterals.CONSTANT. These APIs can be

used as placeholders for string and integer constants to represent

any arbitrary value in examples. When Seader identifies such spe-

cial EDL APIs in examples, it keeps the APIs in𝑇 and later specially

matches them with constants in 𝑃 .

Scenario 2: A pattern has multiple alternative insecure (or secure)

options. Given a parameter of certain security API, suppose that

there are (1)𝑚 distinct values to cause API misuse and (2) 𝑛 other al-

ternatives to ensure security, where𝑚 ≥ 1, 𝑛 ≥ 1. To enumerate all

possible combinations between the vulnerable code templates and

repair options, users have to provide𝑚 × 𝑛 pairs of plain examples,

which practice is inefficient. To solve this issue, we defined another

two method APIs in StringLiterals. As shown in Figure 7, one API

is a constructor of StringLiterals, which can take in any number of

string literals as arguments (see line 1 in 𝐼) and store those values

into an internal list structure. The other API is getAString(), which

randomly picks and returns a value from that list (see line 2 in

𝐼). With these two APIs, a domain expert can efficiently illustrate

multiple secure/insecure options in just one code pair.

Insecure code (I)
1 S t r i n g L i t e r a l s l i t e r a l s =new S t r i n g L i t e r a l s ("AES " , " RC2 " ,

" RC4 " , " RC5 " , "DES " , " b l ow f i s h " , " DESede ") ;

2 Cipher . g e t I n s t a n c e (l i t e r a l s . g e tAS t r i n g ()) ;

Secure code (S)
1 S t r i n g L i t e r a l s l i t e r a l s = new S t r i n g L i t e r a l s ("AES /GCM/

PKCS5Padding " , " RSA " , " ECIES) ;

2 Cipher . g e t I n s t a n c e (l i t e r a l s . g e tAS t r i n g ()) ;

Figure 7: A code pair where multiple alternative secure and

insecure options are specified simultaneously

The examples in Figure 7 show that when security API Cipher.

getInstance(...) is called, the insecure parameter values include

"AES", "RC2", "RC4", "RC5", "DES", "blowfish", and "DESede". Each inse-

cure value should be replaced by either "AES/GCM/PKCS5Padding", "RSA",

or "ECIES". Given such examples, Seader extracts insecure/secure

options from StringLiterals-related statements, detects vulnerabil-

ities in 𝑃 if the security API is invoked with any insecure option,

and suggests fixes by randomly picking one of the secure options.

Scenario 3: A pattern requires for certain value range of a variable.

Given an integer parameter 𝑝 of certain security API, suppose that

there is a threshold value 𝑡ℎ such that the API invocation is secure

only when 𝑝 ≥ 𝑡ℎ. To enumerate all possible vulnerable cases

and related repairs via plain examples, theoretically, a user should

provide (𝑡ℎ − 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 .𝑀𝐼𝑁_𝑉𝐴𝐿𝑈𝐸) × (𝐼𝑛𝑡𝑒𝑔𝑒𝑟 .𝑀𝐴𝑋_𝑉𝐴𝐿𝑈𝐸 −
𝑡ℎ + 1) code pairs, which practice is cumbersome and unrealistic.

Therefore, we invented a special way of example definition for such

scenarios, which requires users to provide only (1) one insecure

example by setting 𝑝 to a concrete value less than 𝑡ℎ and (2) one

secure example by setting 𝑝 = 𝑡ℎ. As shown in Figure 5, if a security

expert wants to describe the pattern that the array size of the first

parameter used in PBEparameterSpec(byte[], int) should be no less than

8, then he/she can define 𝐼 by creating an array with a smaller size

(i.e., 4) and define 𝑆 by setting the array size to 8. Seader was

developed to identify the usage of distinct integer literals between

𝐼 and 𝑆 , and to infer a secure value range accordingly.

6

4 EVALUATION

This section first introduces the data sets and metrics used for eval-

uation (Sections 4.1-4.2). It then presents Seader’s effectiveness of

pattern inference (Section 4.3). Next, it describes Seader’s capabili-

ties of vulnerability detection (Section 4.4) and repair suggestion

(Section 4.5). Essentially, Sections 4.4 and 4.5 reflect Seader’s effec-

tiveness of pattern application.

4.1 Data Sets

There are two types of data used: data to evaluate pattern inference,

and data to evaluate pattern application.

4.1.1 A data set to evaluate pattern inference. Prior research sum-

marized a number of security API misuses and related correct usage

in Java [1, 9, 14, 15, 24, 33, 35, 37, 42, 44]. To evaluate Seader’s ef-

fectiveness of pattern inference, we referred to some well-described

API misuses and fixes to craft code examples as inputs for Seader.

With more details, Table 1 lists the 13 security class APIs we focused

on, the insecure usage of certain method API(s) defined by these

classes, and the related secure usage. With this domain knowledge,

we manually created a set of 25 <insecure, secure> code pairs.

4.1.2 Two data sets to evaluate pattern application. The first data
set contains 32 real vulnerabilities from 10 Apache open-source

projects. To create this set, the second author randomly picked 10

Apache projects and searched for any security API usage based on

keywords. For each invoked or overridden security API, the second

author leveraged his domain knowledge to manually analyze the

program context and to decide whether the API is misused. Once the

data set was created, another two authors checked the data to decide

whether all included vulnerabilities were true positives; if any false

positive was revealed, all three authors discussed until reaching an

agreement. Notice that none of these three authors has experience

with Seader. Because the data set was created in a tool-agnostic

way, we can use it to objectively evaluate Seader’s capability of

vulnerability detection. We will also use this data to evaluate the

effectiveness of the state-of-the-art vulnerability detection tool—

CryptoGuard [42], and compare Seader with CryptoGuard.

The other data set contains 100 widely used Apache open-source

projects. We decided to download Apache projects for three reasons.

First, they are well-maintained and have good code quality; it can

be hard for us to identify vulnerabilities in these projects. Second,

the project developers are usually responsive to the pull requests or

code changes suggested by other developers. Third, Apache projects

are usually widely used, so any API misuses found in those projects

are important and may negatively impact many other projects that

depend on them. Therefore, to create this data set, we first ranked

the Apache projects available on GitHub [4] in the descending order

of their stars. Namely, the more stars a project 𝑃𝑟 𝑗 has, the more

likely that 𝑃𝑟 𝑗 is popular, and the higher 𝑃𝑟 𝑗 is ranked. Next, we

located the top 100 projects that meet the following two criteria:

• Each project uses at least one security API that Seader ex-

amines.

• The project is compilable because Seader analyzes the com-

piled JAR files to reveal vulnerabilities.

This data set is used to mainly evaluate Seader’s effectiveness of

repair suggestion.

4.2 Metrics

As with prior work [42], we leveraged the following three metrics

to measure tools’ capability of vulnerability detection:

Precision (P) measures among all reported vulnerabilities, how

many of them are true vulnerabilities.

𝑃 =
of correct reports

Total # of reports

× 100% (2)

Recall (R)measures among all known vulnerabilities, howmany

of them are detected by a tool.

𝑅 =
of correct reports

Total # of known vulnerabilities

× 100% (3)

F-score (F) is the harmonic mean of precision and recall, and is

used to measure the overall detection accuracy of an approach:

𝐹 =
2 × 𝑃 × 𝑅

𝑃 + 𝑅
× 100% (4)

4.3 Effectiveness of Pattern Inference

As mentioned in Section 4.1, we crafted 25 code pairs to evaluate

Seader’s effectiveness of pattern inference. To facilitate explana-

tion, we categorized these pairs by checking two conditions:

C1. Do 𝐼 and 𝑆 contain single or multiple statements?

C2. Does the pattern generalization involve variable abstraction?

The two conditions actually reflect the difficulty levels or challenges

of these pattern inference tasks. For instance, if 𝐼 or 𝑆 has multiple

statements, Seader conducts data-dependency analysis to locate

the edit-relevant context in 𝐼 or to reveal the fix-relevant code in 𝑆 .

If 𝐼 or 𝑆 uses variables, Seader abstracts all variable names to ensure

the general applicability of inferred patterns. As shown in Table 3,

there are five simplest pairs that can be handled by Seader without

conducting any data-dependency analysis or identifier generaliza-

tion. Meanwhile, there are 14 most complicated cases that require

for both data-dependency analysis and identifier generalization.

In our evaluation, Seader correctly inferred patterns from all

pairs. When some pairs illustrate distinct secure/insecure options

(e.g., distinct string literals) for the same critical API, Seadermerged

the inferred patterns because they demonstrate misuses of the same

security API. In this way, Seader derived 18 unique patterns.

Finding 1: Our experiment with 25 code pairs shows Seader’s

great capability of pattern inference; it also indicates the great

potential of example-based vulnerability detection and repair.

4.4 Effectiveness of Vulnerability Detection

As described in Section 4.1.1, the 32 vulnerabilities were manually

identified in 10 randomly selected Apache projects. In particular, as

shown in Table 2, themanual ground truth set (GT) actually includes

vulnerable code from eight projects, but covers no vulnerability in

two projects: shiro-crypto-cipher-1.5.0.jar and wagon-provider-api-

3.3.4.jar; thus, we were unable to calculate tools’ recall rates based

on GT for the two projects. Seader and CryptoGuard separately

revealed vulnerabilities in eight and nine projects.

For six projects (i.e., apacheds-kerberos-codec-2.0.0.AM25.jar,

artemis-commons-2.11.0.jar, deltaspike-core-impl-1.9.2.jar, flume-

file-channel-1.9.0.jar, jclouds-core-2.2.0.jar, and wagon-provider-

api-3.3.4.jar), both tools revealed more vulnerabilities than GT. Be-

cause GT can be incomplete, it may miss some true vulnerabilities

7

Table 1: The API misuses and related fixes summarized by prior work [1, 15, 35, 42]

Idx Security Class API Insecure Secure

1 Cipher The algorithm and/or mode is set as RC2, RC4, RC5, DES, DESede,

AES/ECB, or Blowfish.

The algorithm and/or mode is set as RSA, GCM, AES, or ECIES

2 HostnameVerifier Allow all hostnames. Implement logic to actually verify hostnames.

3 IvParameterSpec Create an initialization vector (IV) with a constant. Create an IV with a random value.

4 KeyPairGenerator Create an RSA key pair where key size < 2048 bits or create an ECC

key pair where key size < 224 bits

RSA key size >= 2048 bits, ECC key size >= 224 bits

5 KeyStore When loading a keystore from a given input stream, the provided

password is a hardcoded constant non-null value.

The password is retrieved from some external source (e.g., database

or file)

6 MessageDigest The algorithm is MD2, MD5, SHA-1, or SHA-256. The algorithm is SHA-512.

7 PBEKeySpec Create a PBEKey based on a constant salt. Use a randomly generated salt value to create the key.

8 PBEParameterSpec Create a parameter set for password-based encryption (PBE) by setting

salt size < 64 bits or iteration count < 1000

Salt size >= 64 bits, iteration count >=1000.

9 SecretKeyFactory Create secret keys with algorithm DES, DESede, ARCFOUR, PBE-

WithMD5AndDES, or PBKDF2WithHmacSHA1.

Create secret keys with AES or PBEWithHmac-

SHA256AndAES_128.

10 SecretKeySpec Create a secret key with a constant value. Create a secret key with a randomly generated value.

11 SecureRandom Use Random to generate random values, or set SecureRandom to use a

constant seed.

Use SecureRandom instead of Random, and ensure the seed to be

a random value.

12 SSLContext Protocol version < TLSv1.3 Protocol version >= TLSv1.3

13 TrustManager Trust all clients or servers Check clients and/or check servers.

Table 2: Evaluation results on the 32-vulnerability set

Apache Project
Manual Seader CryptoGuard

Ground

Truth

(GT)

of Reported

Vulnerabili-

ties

of

Correct

Reports

P(%) R% F(%)

of Reported

Vulnerabili-

ties

of

Correct

Reports

P(%) R% F(%)

apacheds-kerberos-codec-2.0.0.AM25.jar 10 12 12 100 100 100 12 12 100 100 100

artemis-commons-2.11.0.jar 3 4 4 100 100 100 4 4 100 100 100

deltaspike-core-impl-1.9.2.jar 1 2 2 100 100 100 2 2 100 100 100

flume-file-channel-1.9.0.jar 1 3 3 100 100 100 3 3 100 100 100

hadoop-hdfs-3.2.1.jar 5 5 5 100 100 100 5 5 100 100 100

jclouds-core-2.2.0.jar 2 7 7 100 100 100 5 5 100 100 100

shiro-crypto-cipher-1.5.0.jar 0 0 0 100 - - 0 0 100 - -

wagon-provider-api-3.3.4.jar 0 1 1 100 - - 1 1 100 - -

wss4j-ws-security-common-2.2.4.jar 5 5 5 100 100 100 5 5 100 100 100

wss4j-ws-security-stax-2.2.4.jar 5 0 0 - - - 5 5 100 100 100

Overall 32 39 39 100 84 91 42 42 100 100 100

When # of Reported Vulnerabilities >Manual Ground Truth, we manually checked each additional report to decide the correctness and calculated precision accordingly.

Table 3: The 25 code pairs for pattern inference

Single statement Multiple statements

Identical 5 5

Abstract 1 14

that either tool can identify. To properly evaluate the precision rates

in such scenarios, we first intersected the tool-generated reports

with GT, and then manually examined any unmatched report for

its correctness. Take artemis-commons-2.11.0.jar as an example.

Among the four vulnerabilities reported by Seader, three of them

match the known ones in GT; thus, we further checked the remain-

ing one and confirmed the vulnerability. In this way, the precision

of Seader for the project is 4/4×100%=100%. We observed that all

reports generated by Seader and CryptoGuard are true positives,

so both tools achieved 100% precision.

For project jclouds-core-2.2.0.jar, Seader identified more vulner-

abilities than CryptoGuard (7 vs. 5), mainly because Seader checks

for more insecure options of the security API SSLContext.getInstance(

String protocol). Meanwhile, CryptoGuard identified more vulnera-

bilities in the project wss4j-ws-security-stax-2.2.4.jar than Seader

(5 vs. 0). This is mainly due to the limitation of WALA—the static

analysis framework used by Seader. When WALA builds a call

graph for the whole program 𝑃 , it requires that all library depen-

dencies of 𝑃 should exist as JAR files in the class path. If some

dependencies are missing, the call graph built by WALA can be

incomplete. Consequently, when Seader traversed all methods in

an incomplete graph 𝐶𝐺 , it missed the API misuses of the methods

that are excluded from 𝐶𝐺 .

Overall, given 10 open-source projects, Seader reported 39 vul-

nerabilities and achieved 100% precision, 84% recall, and 91% accu-

racy. CryptoGuard detected 42 vulnerabilities and achieved 100%

precision, 100% recall, and 100% accuracy. The comparison shows

that Seader effectively detected API-related vulnerabilities, and

has comparable performance with CryptoGuard in most projects.

In the future, we will further improve Seader by expanding its

pattern set and overcoming the limitation due to WALA.

Finding 2: Given 10 open-source projects, Seader worked as

effectively as the state-of-the-art tool CryptoGuard in 8 projects.

This indicates Seader’s great capability of vulnerability detection.

4.5 Effectiveness of Repair Suggestion

By applying Seader to the second data set mentioned in Sec-

tion 4.1.2, Seader reported 988 real vulnerabilities in 100 open-

source projects. About 43% of these vulnerabilities (i.e., 422) are re-

lated to SecureRandomAPIs; 25% of vulnerabilities are about TrustManager

API misuses; and 15% of vulnerabilities are relevant to MessageDigest.

8

Table 4: The 988 vulnerabilities found in 100Apache projects

Security Class API # of Detected Vulnerabilities # of Suggested Fixes

Cipher 23 23

HostnameVerifier 68 68

IvParameterSpec 6 6

KeyPairGenerator 1 1

KeyStore 10 10

MessageDigest 147 147

PBEKeySpec 8 8

PBEParameterSpec 6 6

SecretKeyFactory 12 12

SecretKeySpec 11 11

SecureRandom 422 422

SSLContext 26 26

TrustManager 248 248

Total 988 988

Table 5: Developers’ opinions on Seader’s outputs

Feedback # of Pull Requests

Confess vulnerabilities 14

Need more clarification 3

Believe to be irrelevant 8

Try to resolve the security issues 6

To assess the quality of Seader’s fix suggestions, we manually

checked 100 fixes suggested by Seader. To ensure the representa-

tiveness of our manual inspection results, we selected the 100 fixes

to cover at least one vulnerability for each security class API. Based

on the our inspection, the 100 fixes are all correctly customized for

program contexts. It means that Seader can properly suggest fixes.

To further investigate how developers assess the quality of Seader’s

outputs, we picked 59 vulnerable Java classes reported by Seader

and filed 59 pull requests (PRs) in the project repositories. In each

PR, we (1) described the vulnerable code, (2) suggested the fix(es),

(3) explained the security implication of each vulnerability, and (4)

asked for developers’ opinions on the program issues and solutions.

Up till now, we have received developers’ feedback for 25 PRs. As

shown in Table 5, developers confessed the revealed vulnerabilities

in 14 PRs, needed us to provide more clarification information for

3 PRs, and believed the reports to be security-irrelevant for 8 PRs.

More importantly, for 8 of the 14 PRs, developers took actions to

either fix the vulnerabilities, disable the insecure implementation,

or at least leave comments to warn people of the insecure code.

Interestingly, some developers rejected our repair suggestions

for three major reasons. First, several developers would like to see

real attacks to exploit those vulnerabilities (e.g., TrustManager trusts

all). Particularly, two developers emphasized that the vulnerabili-

ties (e.g., MessageDigest.getInstance("MD5") exist in test cases, which

implies that these vulnerabilities cannot lead to real attacks. Second,

some developers are reluctant to introduce API breaking changes

by removing the insecure functionalities from their software (𝑃), be-

cause they are afraid that the client projects based on their software

(𝐶𝑃) can be negatively influenced (e.g., getting compilation errors).

Therefore, these developers rely on the wisdom of𝐶𝑃 programmers

to (1) identify the insecure options provided by 𝑃 and (2) extend 𝑃

to implement stronger security protection as needed.

Third, certain developers believe that some reported API misuses

are not necessarily insecure. For instance, one developer explained

that his Javamethod computeSha256(File) invokes MessageDigest.getInst-

ance("SHA-256") just to generate a message digest for any given file.

This functionality has nothing to do with security.

Finding 3: Seader revealed 988 vulnerabilities in 100 open-source

projects. By filing 59 PRs based on some of Seader’s outputs,

we identified a mixture of developers’ opinions on the revealed

vulnerabilities and suggested fixes.

5 RELATEDWORK

The related work includes automatic program repair, detection of

security API misuses, and example-based program transformation.

5.1 Automatic Program Repair (APR)

Tools were proposed to generate candidate patches for certain bugs,

and to automatically check patch correctness using compilation and

testing [11, 25, 27, 30, 34, 41]. Such approaches usually make two

assumptions. First, software bugs can trigger some test failure(s).

Second, automatic fault localization techniques [10, 23, 31] can be

adopted to locate bugs in source code based on the execution cover-

age of passed and failed tests. With such assumptions, GenProg [27]

and RSRepair [41] create candidate patches by replicating, mutat-

ing, or deleting code randomly from the existing buggy program.

To further improve the quality of created patches, PAR [25] and

Prophet [30] prioritize patch generation based on the frequently

applied bug fixes by developers. Each patch generated by current

APR tools can only edit one or two lines of code (e.g., changing one

or two numeric values or adding an if-condition check).

Existing APR tools are not applicable to vulnerability detection

and repair for three reasons. First, their assumptions do not hold.

Vulnerable code is functionally correct and rarely fails any test

case, so APR tools cannot rely on test failures to reveal vulnera-

bilities or assess applied fixes. Second, given a security API (e.g.,

MessageDigest.getInstance(...)), the secure parameter options can be

totally different from insecure ones (e.g., SHA-512 vs. MD1). Therefore,

it is almost impossible for APR tools to suggest secure options based

on the existing codebases with solely insecure options. Third, some

security patches require for significant code modification (e.g., in-

serting more than 10 lines of code), but APR tools are unable to

generate such complex edits.

5.2 Detecting of Security API Misuses

Researchers built various tools to detect security vulnerabilities

related to API misuses [13–16, 20, 26, 42]. Specifically, most tools

conduct static program analysis to check programs against hard-

coded templates of vulerabilities [13, 14, 20, 42]. For instance, Mal-

loDroid scans the decompiled code of Android apps to a) extract the

networking API calls and valid HTTP(S) URLs, b) check the validity

of the SSL certificates of all extracted HTTPS hosts, and c) identify

apps that invoke APIs to customize SSL usage [14]. Some other

tools adopt machine learning (ML)-based approaches to identify

vulnerabilities [15, 16]. For instance, Fischer et al. [15] transformed

secure/insecure code corpus into numeric vectors, and used support

vector machine (SVN) to train a binary-class classifier based on

those vectors. Next, given arbitrary code 𝐶 , the classifier predicts

whether C is insecure. Additionally, CrySL is a domain-specific lan-

guage (DSL) that developers can use to describe vulnerable usage

of security APIs [26].

However, it is not easy to extend the above-mentioned tools to

detect new vulnerabilities. For instance, the tools based on hard-

coded rules often require users to modify the tool implementation;

9

ML-based tools may require for a large amount of labeled secure

and insecure code samples for classifier retraining; DSL-based tools

require users to learn new languages for pattern prescription, while

the learning curve may be high for some security researchers or

developers. In comparison, Seader has great extensibility because

it only requires users to demonstrate vulnerabilities and related

repairs with a small number of Java code examples. By inferring pat-

terns from those examples, Seader gains the capability of detecting

new vulnerabilities and proposing related fixing suggestions.

5.3 Example-Based Program Transformation

Based on the insight that developers modify similar code in similar

ways, researchers developed tools to infer program transformations

from exemplar edits and to manipulate code or suggest changes

accordingly [8, 12, 32, 36, 38, 43, 45, 46]. For instance, while users

interactively edit code in one program context, simultaneous text

editing approaches apply identical textual edits in other preselected

program contexts at the same time [12, 38, 45]. Given one or mul-

tiple code change examples, LASE [36] and REFAZER [43] infer

a program transformation from the examples; they then use the

transformation to locate similar code to edit, and apply customized

transformations to those locations. TINFERER generalizes language

translation rules from exemplar Java code and the equivalent im-

plementation by Swift; it then applies the Java-to-Swift rules to

translate any given Java program into Swift [8]. The most closely re-

lated work to Seader is VuRLE [32], which also detects and repairs

vulnerabilities based on <insecure, secure> code examples.

However, simultaneous editing cannot identify edit locations or

apply customized edits. The other approaches only adopt (1) token-

based or AST-based matching and/or (2) simple intra-procedural

analysis to identify edit locations; they are insufficient for two

reasons. First, token-based or AST-based statement matching is in-

flexible. When an edit location has statements formatted differently

from the exemplar code (compare Figure 2(𝐼) with Listing 1), current

tools can miss the location. Second, intra-procedural analysis only

finds code matches in single methods; it does not go beyond method

boundaries or reveal any edit location that involves code from mul-

tiple methods. In comparison, Seader conducts inter-procedural

analysis and program slicing to overcome the limitations. Actually,

we also contacted the authors of VuRLE to ask for their programs

and data, but did not get the materials to empirically compare

Seader with VuRLE.

6 THREATS TO VALIDITY

All inferred patterns and detected vulnerabilities are limited to our

experiment data sets. The observations may not generalize well

to close-source projects. In the future, we plan to include more

<insecure, secure> examples or even close-source projects into our

evaluation, so that our findings are more representative.

We evaluated the recall rates of Seader and CryptoGuard based

on a set of 32 vulnerabilities manually found in 10 open-source

projects. This ground truth set is subject to human bias, and our data

set constructor accidentally overlooked some actual vulnerabilities

in those projects. Such incomplete ground truth can influence recall

evaluation. In the future, we plan to recruit more security experts to

simultaneously inspect the same codebases, so that the built ground

truth set is more complete.

In some repair suggestions provided by Seader, there are place-

holders that we need developers to further customize (see “//Please

change ‘example.com’ as needed” in Figure 6). Such placeholders should

be filled based on developers’ unique software environments (e.g.,

host name settings), or sometimes even require developers to do

extra configurations outside the codebase (e.g., installing SSL cer-

tificates). Therefore, the current repair suggestions by Seader may

sometimes seem vague and abstract. In the future, we plan to pro-

vide more detailed suggestions and explore interactive approaches

that guide developers to apply complete repairs step-by-step.

7 CONCLUSION

Security is important for software quality assurance. To help de-

velopers better protect their software based on the state-of-the-art

security research, in this paper, we present Seader—a new ap-

proach that takes in <insecure, secure> code examples, generalizes

vulnerability-repair patterns from examples, and applies those pat-

terns for vulnerability detection and repair suggestion. Compared

with prior work, Seader lowers the technical barriers for security

experts to illustrate their domain knowledge, and concretizes secu-

rity expertise as customized code edits for software practitioners.

In this way, Seader intends to bridge the gap between security

research and software development.

Based on our evaluation results, Seader is capable of inferring

various patterns from diverse code examples; it detects real vul-

nerabilities and suggests fixes in open-source projects with high

accuracy. More importantly, we filed 59 pull requests (PRs) to seek

for developers’ opinions on the revealed vulnerabilities and fix

suggestions by Seader. Interestingly, responders of 14 PRs agreed

upon the revealed vulnerabilities; for 8 of these PRs, responders

took actions to mitigate or eliminate those security issues. Mean-

while, responders of another eight PRs disliked Seader’s outputs

due to (1) the fear of breaking their software specifications when

applying security patches, (2) expectation for real exploits of those

vulnerabilities, (3) belief in software users to consciously adopt

vulnerable code for good reasons (e.g., quick prototyping), and (4)

disagreement on certain security API misuses. Our findings show

interesting opinion contrasts between security research and soft-

ware practices. In the future, we will investigate approaches to

automate security attacks based on revealed vulnerabilities.

REFERENCES

[1] 2016. SLOTH: TLS 1.2 vulnerability (CVE-2015-7575). https://access.redhat.com/

articles/2112261.

[2] 2017. Developers lack skills needed for secure DevOps, survey shows.

https://www.computerweekly.com/news/450424614/Developers-lack-skills-

needed-for-secure-DevOps-survey-shows.

[3] 2019. Too few cybersecurity professionals is a gigantic problem for

2019. https://techcrunch.com/2019/01/27/too-few-cybersecurity-professionals-

is-a-gigantic-problem-for-2019/.

[4] 2020. GitHub. https://github.com.

[5] 2020. Java Secure Socket Extension (JSSE) Reference Guide. https://docs.oracle.

com/javase/9/security/java-secure-socket-extension-jsse-reference-guide.htm.

[6] 2020. StackOverflow. https://stackoverflow.com.

[7] 2020. WALA IR. https://github.com/wala/WALA/wiki/Intermediate-

Representation-(IR).

[8] Kijin An, Na Meng, and Eli Tilevich. 2018. Automatic Inference of Java-to-

Swift Translation Rules for Porting Mobile Applications. In Proceedings of the 5th

International Conference on Mobile Software Engineering and Systems (Gothenburg,

Sweden) (MOBILESoft ?18). Association for Computing Machinery, New York,

NY, USA, 180?190. https://doi.org/10.1145/3197231.3197240

10

https://access.redhat.com/articles/2112261
https://access.redhat.com/articles/2112261
https://www.computerweekly.com/news/450424614/Developers-lack-skills-needed-for-secure-DevOps-survey-shows
https://www.computerweekly.com/news/450424614/Developers-lack-skills-needed-for-secure-DevOps-survey-shows
https://techcrunch.com/2019/01/27/too-few-cybersecurity-professionals-is-a-gigantic-problem-for-2019/
https://techcrunch.com/2019/01/27/too-few-cybersecurity-professionals-is-a-gigantic-problem-for-2019/
https://github.com
https://docs.oracle.com/javase/9/security/java-secure-socket-extension-jsse-reference-guide.htm
https://docs.oracle.com/javase/9/security/java-secure-socket-extension-jsse-reference-guide.htm
https://stackoverflow.com
https://github.com/wala/WALA/wiki/Intermediate-Representation-(IR)
https://github.com/wala/WALA/wiki/Intermediate-Representation-(IR)
https://doi.org/10.1145/3197231.3197240

[9] Mengsu Chen, Felix Fischer, Na Meng, Xiaoyin Wang, and Jens Grossklags. 2019.

How Reliable is the Crowdsourced Knowledge of Security Implementation? arXiv

preprint arXiv:1901.01327 (2019).

[10] Tung Dao, Lingming Zhang, and Na Meng. 2017. How Does Execution Infor-

mation Help with Information-retrieval Based Bug Localization?. In Proceed-

ings of the 25th International Conference on Program Comprehension (Buenos

Aires, Argentina) (ICPC ’17). IEEE Press, Piscataway, NJ, USA, 241–250. https:

//doi.org/10.1109/ICPC.2017.29

[11] Favio DeMarco, Jifeng Xuan, Daniel Le Berre, and Martin Monperrus. 2014.

Automatic Repair of Buggy if Conditions and Missing Preconditions with SMT.

In Proceedings of the 6th International Workshop on Constraints in Software Testing,

Verification, and Analysis.

[12] Ekwa Duala-Ekoko and Martin P. Robillard. 2007. Tracking Code Clones in

Evolving Software. In ICSE ’07: Proceedings of the 29th International Conference

on Software Engineering. IEEE Computer Society, Washington, DC, USA, 158–167.

https://doi.org/10.1109/ICSE.2007.90

[13] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel.

2013. An empirical study of cryptographic misuse in android applications. In

Proceedings of the 2013 ACM SIGSAC conference on Computer & communications

security. ACM, 73–84.

[14] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd

Freisleben, and Matthew Smith. 2012. Why Eve and Mallory love Android: An

analysis of Android SSL (in) security. In Proceedings of the 2012 ACM conference

on Computer and communications security. ACM, 50–61.

[15] Felix Fischer, Konstantin Böttinger, Huang Xiao, Christian Stransky, Yasemin

Acar, Michael Backes, and Sascha Fahl. 2017. Stack overflow considered harmful?

the impact of copy&paste on android application security. In 2017 IEEE Symposium

on Security and Privacy (SP). IEEE, 121–136.

[16] Felix Fischer, Huang Xiao, Ching-Yu Kao, Yannick Stachelscheid, Benjamin John-

son, Danial Razar, Paul Fawkesley, Nat Buckley, Konstantin Böttinger, Paul

Muntean, and Jens Grossklags. 2019. Stack Overflow Considered Helpful! Deep

Learning Security Nudges Towards Stronger Cryptography. In 28th USENIX Secu-

rity Symposium (USENIX Security 19). USENIX Association, Santa Clara, CA, 339–

356. https://www.usenix.org/conference/usenixsecurity19/presentation/fischer

[17] Beat Fluri, Michael Wuersch, Martin PInzger, and Harald Gall. 2007. Change

distilling: Tree differencing for fine-grained source code change extraction. IEEE

Transactions on software engineering 33, 11 (2007), 725–743.

[18] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and

Vitaly Shmatikov. 2012. The most dangerous code in the world: validating SSL

certificates in non-browser software. In Proceedings of the 2012 ACM conference

on Computer and communications security. ACM, 38–49.

[19] Matthew Green and Matthew Smith. 2016. Developers are not the enemy!: The

need for usable security apis. IEEE Security & Privacy 14, 5 (2016), 40–46.

[20] Boyuan He, Vaibhav Rastogi, Yinzhi Cao, Yan Chen, VN Venkatakrishnan, Run-

qing Yang, and Zhenrui Zhang. 2015. Vetting SSL usage in applications with

SSLint. In 2015 IEEE Symposium on Security and Privacy. IEEE, 519–534.

[21] Roya Hosseini and Peter Brusilovsky. 2013. Javaparser: A fine-grain concept

indexing tool for java problems. In CEUR Workshop Proceedings, Vol. 1009. Uni-

versity of Pittsburgh, 60–63.

[22] Java Cryptography Architecture [n.d.]. Java Cryptography Architec-

ture. https://docs.oracle.com/javase/9/security/java-cryptography-architecture-

jca-reference-guide.htm.

[23] James A. Jones and Mary Jean Harrold. 2005. Empirical Evaluation of the Taran-

tula Automatic Fault-localization Technique. In Proceedings of the 20th IEEE/ACM

International Conference on Automated Software Engineering (Long Beach, CA,

USA) (ASE ’05). ACM, New York, NY, USA, 273–282. https://doi.org/10.1145/

1101908.1101949

[24] B. Kaliski. 2000. PKCS #5: Password-Based Cryptography Specification Version

2.0. RFC 2898 (Informational). http://www.ietf.org/rfc/rfc2898.txt

[25] Dongsun Kim, Jaechange Nam, Jaewoo Song, and Sunghun Kim. 2013. Auto-

matic Patch Generation Learned from Human-written Patches. In IEEE/ACM

International Conference on Software Engineering (to appear).

[26] Stefan Krüger, Johannes Späth, Karim Ali, Eric Bodden, and Mira Mezini. 2018.

CrySL: An Extensible Approach to Validating the Correct Usage of Cryptographic

APIs. In 32nd European Conference on Object-Oriented Programming (ECOOP 2018).

Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[27] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer.

January 2012. GenProg: A Generic Method for Automatic Software Repair. IEEE

Trans. Softw. Eng. 38, 1 (January 2012).

[28] VI Levenshtein. 1966. Binary Codes Capable of Correcting Deletions, Insertions

and Reversals. Soviet Physics Doklady 10 (1966), 707.

[29] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun

Deng, and Yuyi Zhong. 2018. VulDeePecker: A Deep Learning-Based System

for Vulnerability Detection. CoRR abs/1801.01681 (2018). arXiv:1801.01681

http://arxiv.org/abs/1801.01681

[30] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learning

Correct Code. SIGPLAN Not. (2016).

[31] Lucia, David Lo, Lingxiao Jiang, andAditya Budi. 2010. Comprehensive evaluation

of association measures for fault localization. In Software Maintenance (ICSM),

2010 IEEE International Conference on. 1–10. https://doi.org/10.1109/ICSM.2010.

5609542

[32] Siqi Ma, Ferdian Thung, David Lo, Cong Sun, and Robert H Deng. 2017. Vurle:

Automatic vulnerability detection and repair by learning from examples. In

European Symposium on Research in Computer Security. Springer, 229–246.

[33] James Manger. 2001. A Chosen Ciphertext Attack on RSA Optimal Asymmetric

Encryption Padding (OAEP) as Standardized in PKCS #1 v2.0. In Advances in

Cryptology — CRYPTO 2001, Joe Kilian (Ed.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 230–238.

[34] S. Mechtaev, J. Yi, and A. Roychoudhury. 2016. Angelix: Scalable Multiline Pro-

gram Patch Synthesis via Symbolic Analysis. In 2016 IEEE/ACM 38th International

Conference on Software Engineering (ICSE). 691–701.

[35] Florian Mendel, Tomislav Nad, and Martin Schläffer. 2013. Improving Local

Collisions: New Attacks on Reduced SHA-256. In Advances in Cryptology – EU-

ROCRYPT 2013, Thomas Johansson and Phong Q. Nguyen (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 262–278.

[36] Na Meng, Miryung Kim, and Kathryn McKinley. 2013. LASE: Locating and

Applying Systematic Edits. In ICSE. 10.

[37] Na Meng, Stefan Nagy, Danfeng Yao, Wenjie Zhuang, and Gustavo Arango-

Argoty. 2018. Secure coding practices in java: Challenges and vulnerabilities.

In 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE).

IEEE, 372–383.

[38] Robert C. Miller and Brad A. Myers. 2001. Interactive Simultaneous Editing of

Multiple Text Regions. In Proceedings of the General Track: 2002 USENIX Annual

Technical Conference. USENIX Association, Berkeley, CA, USA, 161–174.

[39] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. 2016. Jumping Through

Hoops: Why Do Java Developers Struggle with Cryptography APIs?. In Proceed-

ings of the 38th International Conference on Software Engineering (Austin, Texas)

(ICSE). ACM, New York, NY, USA, 935–946. https://doi.org/10.1145/2884781.

2884790

[40] United States National Institute of Standards and Technology (NIST). 2001. An-

nouncing the ADVANCED ENCRYPTION STANDARD (AES). Federal Information

Processing Standards Publication (2001).

[41] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014. The

Strength of Random Search on Automated Program Repair. In ICSE.

[42] Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon, Ke Tian, Miles Frantz,

Murat Kantarcioglu, and Danfeng (Daphne) Yao. 2019. CryptoGuard: High Preci-

sion Detection of Cryptographic Vulnerabilities in Massive-Sized Java Projects. In

Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications

Security (London, United Kingdom) (CCS ’19). Association for ComputingMachin-

ery, New York, NY, USA, 2455–2472. https://doi.org/10.1145/3319535.3345659

[43] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit

Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn Hartmann. 2017. Learning syntactic

program transformations from examples. In Proceedings of the 39th International

Conference on Software Engineering. IEEE Press, 404–415.

[44] Yaron Sheffer, Ralph Holz, and Peter Saint-Andre. 2015. Recommendations for

Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer

Security (DTLS). RFC 7525. https://doi.org/10.17487/RFC7525

[45] Michael Toomim, Andrew Begel, and Susan L. Graham. 2004. Managing Du-

plicated Code with Linked Editing. In VLHCC ’04: Proceedings of the 2004 IEEE

Symposium on Visual Languages - Human Centric Computing. IEEE Computer

Society, Washington, DC, USA, 173–180. https://doi.org/10.1109/VLHCC.2004.35

[46] Shengzhe Xu, Ziqi Dong, and Na Meng. 2019. Meditor: Inference and Application

of API Migration Edits. In Proceedings of the 27th International Conference on

Program Comprehension (Montreal, Quebec, Canada) (ICPC ?19). IEEE Press,

335?346. https://doi.org/10.1109/ICPC.2019.00052

11

https://doi.org/10.1109/ICPC.2017.29
https://doi.org/10.1109/ICPC.2017.29
https://doi.org/10.1109/ICSE.2007.90
https://www.usenix.org/conference/usenixsecurity19/presentation/fischer
https://docs.oracle.com/javase/9/security/java-cryptography-architecture-jca-reference-guide.htm
https://docs.oracle.com/javase/9/security/java-cryptography-architecture-jca-reference-guide.htm
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1145/1101908.1101949
http://www.ietf.org/rfc/rfc2898.txt
https://arxiv.org/abs/1801.01681
http://arxiv.org/abs/1801.01681
https://doi.org/10.1109/ICSM.2010.5609542
https://doi.org/10.1109/ICSM.2010.5609542
https://doi.org/10.1145/2884781.2884790
https://doi.org/10.1145/2884781.2884790
https://doi.org/10.1145/3319535.3345659
https://doi.org/10.17487/RFC7525
https://doi.org/10.1109/VLHCC.2004.35
https://doi.org/10.1109/ICPC.2019.00052

	Abstract
	1 Introduction
	2 A Motivating Example
	3 Approach
	3.1 Change Recognition
	3.2 Pattern Generalization
	3.3 Template Matching
	3.4 Fix Customization
	3.5 Specialized Handling for Certain Patterns

	4 Evaluation
	4.1 Data Sets
	4.2 Metrics
	4.3 Effectiveness of Pattern Inference
	4.4 Effectiveness of Vulnerability Detection
	4.5 Effectiveness of Repair Suggestion

	5 Related Work
	5.1 Automatic Program Repair (APR)
	5.2 Detecting of Security API Misuses
	5.3 Example-Based Program Transformation

	6 Threats to validity
	7 Conclusion
	References

