
FuzzSplore: Visualizing Feedback-Driven Fuzzing Techniques

Andrea Fioraldi1 and Luigi Paolo Pileggi1

1Sapienza University, Rome, Italy
{fioraldi.1692419, pileggi.1691249}@studenti.uniroma1.it

Abstract—Fuzz Testing techniques are the state of the art
in software testing for security issues nowadays. Their great
effectiveness attracted the attention of researchers and hackers
and involved them in developing a lot of new techniques to im-
prove Fuzz Testing. The evaluation and the cross-comparison
of these techniques is an almost open problem. In this paper,
we propose a human-driven approach to this problem based on
information visualization. We developed a prototype upon the
AFL++ fuzzing framework, FUZZSPLORE, that an analyst can
use to get useful insights about different fuzzing configurations
applied to a specific target in order to choose or tune the best
technique during a fuzzing campaign.

1. Introduction

Fuzz Testing or Fuzzing is a family of techniques to
automatically uncovers bugs in software.

Due to its effectiveness, much more efficient than other
software testing techniques like Symbolic Execution [1] [2],
the research in this field is flourishing and several different
techniques were developed to improve fuzz testing, both
from academia and industry.

The evaluation and the comparison of these techniques,
however, is a debatable matter [3].

A common proxy is the comparison of the code coverage
reached over time by each fuzzer, due to the fact that a
fuzzer cannot find a bug if it does not explore at least
the vulnerable code segment. Another widely used metric
is found bugs over time, but a bug can be found just thanks
to randomism or by specific target-dependant actions taken
by the fuzzer and this makes the evaluations very prone to
overfitting.

The data collected using these metrics are often repre-
sentable using a simple time-based graph that shows the
evolution of the fuzzing algorithm.

This approach is useful for immediate basic comparison
between two or more techniques, an analyst has to just see
which technique reaches more coverage in less time but does
not reveal the properties of a fuzzer regards specific types
of program states.

For instance, a technique can be better than another in
exploring some types of program states and at the same
time reaching less code coverage. The technique will not
cover the bugs in the unexplored code of course, but it may

uncover bugs in the program points that it can better explore.
An example of such technique is the directed fuzzer towards
sanitizers violations by Österlund et al. [4].

The problem of the evaluation of fuzzing techniques is
important not only when the aim is to generally states which
fuzzer is best, but also when an analyst wants to select the
best fuzzers for a single target. It is common that fuzzers that
are considered generally better than others on some targets
perform worst than the others [5].

We propose FUZZSPLORE, a tool that allows an ana-
lyst to manually explore the evolution of different fuzzing
techniques regards a single target program.

The main insight that a user can get using the tool are:

1) The ability of a fuzzer to generate clusters of inputs
that are correlated in terms of covered program
points;

2) The ability of a fuzzer in generating diversified
inputs with its mutational algorithm;

3) The ability of a fuzzer to reach program points
exploring intermediate inputs that are not an im-
provement in terms of coverage [6].

These insights can drive the user to choose the best
technique to use for the selected program under test (PUT).

2. Background

The simplest description of Feedback-driven Fuzzing
is an algorithm that provides apparently random data to
a computer program and then it watches for crashes or
unexpected states and also saves the generated input for later
processing if they cover interesting new states in terms of
the chosen feedback [7].

Typically, the property of the program used as feedback
is the set of the edges in the program Control Flow Graph
[8] in what is the so-called Coverage-guided Fuzzing (CGF).

The inputs are mutations of previously saved inputs in
the fuzzing loop in Mutational Fuzzing (Figure 2) or gen-
erated from scratch from a model in Generational Fuzzing.

We base our implementation on AFL++ [5], a widely
used fuzzer in recent times, that is a Mutational Coverage
Guided Fuzzer.

ar
X

iv
:2

10
2.

02
52

7v
2

 [
cs

.C
R

]
 6

 F
eb

 2
02

1

Figure 1: Complete view of the FUZZSPLORE visual panel.

Figure 2: Basic representation of the Mutational Coverage
Guided Fuzzing algorithm

State of the art Coverage-Guided Fuzzers encodes the
approximate executed path in a representation that is easy
and fast to process. AFL++ uses a vector of 65536 entries
by default, the hitcounts vector.

Each coordinate is associated with an edge and each
value represents how many times the edge is executed
modulo 256.

When a value greater than the previous one is registered
in this vector, the fuzzer considers the input interesting and
saves it.

Some extensions of CGF save also intermediate inputs
that are a superset of the coverage reported in the hitcounts
vector, like [9] [10] [6].

In general, when an input is saved, we can associate it
to the testcases that generated it by mutation, the parent
testcases. In this way, is easy to construct a graph of gener-
ated inputs that represents the progress of the hill-climbing
algorithm of the fuzzer, the Generations Graph.

3. Methodology

A fuzzing campaign is the process of running one or
more fuzzers for a long period of time or even continuously
like in OSS-Fuzz [11].

Security researchers typically start fuzzing using naive
configurations and off-the-shelf fuzzers, then, meanwhile,
the campaign runs, observe the evolution and tune the
fuzzers.

Our proposed approach aims to insert in the observation-
tuning feedback loop a visual component to help the re-
searcher better understand insights about the fuzzers testing
a particular target.

The data processed by FuzzSplore comes from the exe-
cution of the corpus of testcases that each fuzzer saved so
far. The execution is instrumented and various properties are
observed.

Then we visualize these collected properties and the
user can relate them to better understand what is going.
After that, the user can choose to drop some fuzzers if less
effective and assign more resources (typically CPUs) to the
most effective fuzzers or tune each individual fuzzer.

The fuzzing campaign can then continue. When it sat-
urates, the analyst can collect insights using our tool and
restart the visual analytics feedback-loop.

Saturation of fuzzers, when no more additional state is
explored or the number of states explodes, is a problem that
was rarely addressed in academic literature but that affects
each type of Feedback-driven Fuzzer [12], and a tool that
can guide towards the selection of techniques that avoid
saturation can help a lot the campaign.

3.1. Data Retrieval

We denote each fuzzer Fi where i is the index that
identifies it. With PUTi we denote the version of the
PUT preprocessed and instrumented in order to be used by
Fi. PUTe is the version of the PUT that logs the edge
coverage using the hitcounts vector. It has to be provided
independently if it is used or not by some fuzzer Fi. With
Ti(t) we denote the set of the saved testcases, the queue,
by Fi until time t (seconds).

Given t as the time chosen by the user to observe
the progress of the fuzzers, the Algorithm 1 computes the
following sets:

• the set C of all the functions Ci : Time −→
NumEdges that relates, for the fuzzer Fi, a time
unit to the number of discovered edges so far;

• the set I of all the functions Ii : Testcase −→
{Fj , ...} that associates, for the fuzzer Fi, each
testcase in Ti(t) to the set of fuzzers that consider
the testcase as interesting;

• the set X of the sets Xi, that maintains, for each
fuzzer, the hitcounts vectors associated with the
execution of each testcase in Ti(t);

Algorithm 1: Compute C, I , and X

for Fi in Fuzzers do
Vacc ← (00...065536)
for T in Ti(t) do

V ← Execute(PUTe, T)
Xi ← Xi ∪ {V }
V, IsInteresting ←
MergeCoverage(Vacc, V)

if IsInteresting then
Ci(Time(T))← CountNotZeros(Vi)

for Fj in Fuzzers \ Fi do
Vacc ← (00...065536)
for T in Ti(t) do

V ← Execute(PUTj , T)
Vacc, IsInteresting ←
MergeCoverage(Vacc, V)

if IsInteresting then
Ii(T)← Ii(T) ∪ {Fj}

return C, I,X

The next item that has to be retrieved, in addition to C,
I and X , is the set G of all the graphs Gi that describes
the evolution of each Ti(t), the levels graph introduced in
Sec. 2.

We assume that each fuzzer encodes the information
about the parent testcases into the metadata of each testcase.
In this way, it is trivial to construct the graph just by reading
all the metadata in Ti(t).

3.2. Visualization

We visualize the computed data C, I , X , G, and some
other properties that can be directly collected in four differ-
ent views.

You can see these views with some example data in the
screenshot of our implementation, in Figure 1.

A time bar is used to select t′ ∈ [0, t] to ignore data
outside the selected time range and, for instance, visualize
the data related to the queue TI(t

′) without the need to run
again Algorithm 1.

3.2.1. Testcases Scatterplot. Each Xi is a matric of |Ti(t)|
rows in which each row is a vector of 65536 entries.

These raw numbers are raw to visualize. To handle this
problem, we reduce the dimensionality of each vector Xi,j

from 65536 to 2, in order to be easily visualized in a
scatterplot.

To do that, we chosen an algorithm that optimizes the
conservation of local distances after the dimensionality re-
duction, t-SNE [13]. The nature of this algorithm is random,
it needs to process X entirely in order to get new vectors
that are meaningfully comparable.

We experimentally observed on a test dataset that a
perplexity of 30 is good enough.

The user can select groups of nodes interactively to
highlight properties in the other visualizations.

3.2.2. Coverage Growth Plot. C can be visualized simply
using a line plot with the X axis representing the domain,
the time, and the Y axis the number of edges.

When a testcase is selected in the scatterplot or in the
generations graph a vertical line appears at position x where
x is the time in which the testcase was discovered.

3.2.3. Interesting Testcases Plot. This plot is used to
visualize the evolution of the fuzzing algorithm in finding
new testcases. The X axis represents time in seconds, the Y
axis the number of new interesting testcases saved by the
fuzzer in that second. This information is directly contained
in Ti(t).

Here too, when a testcase is selected in the scatterplot or
in the generations graph a vertical line appears at position
x where x is the time in which the testcase was discovered.

3.2.4. Generations Graph. We visualize each Generations
Graph Gi combined with I . Given a fuzzer Fj from the
user, we highlight in graph Gi each node associated with
each testcase T if Fj ∈ Ii(T). In this way, the user can
know if the evolution of Ti(t) associated with the fuzzer Fi

is compatible with the selected Fj .
When a testcase is selected in the scatterplot, the border

of the corresponding node in the graph is highlighted. The
user can select additional nodes or deselect nodes selected
from the scatterplot. The scatterplot selection is synchro-
nized in both ways with the graph.

3.3. Analyst Feedback

The insights that an analyst can retrieve in order to
choose or tune the fuzzers using the visualization are, but
not limited to, the following:

• Looking just at the scatterplot, the user can select
a subset of fuzzers that explore different program
points if the points related to each fuzzer in the
graphs are clustered;

• Looking at the scatterplot and the coverage graph,
the user can select a cluster of testcases that are
similar and see the ability of a fuzzer in generating
similar testcases in a small range of time. A fuzzer
that discovers few points at a time and have them
distributed for all the X axis of the coverage plot
should be deprioritized;

• Looking at the coverage graph, when there is a huge
increment of the number of edges, the user can see
if an outlier in the scatterplot was generated. This
allows to isolate interesting testcases that improves
a lot the coverage;

• Selecting testcases in the graph, the user can see if
the testcases are similar in the scatterplot in order
to understand the ability of the mutator to generate
similar or different derived inputs;

• Selecting testcases in the graph and a fuzzer to cross-
compare, the user can know if the coverage metric
of the other fuzzer is sensitive enough to cover the
selected testcases.

With this information, the security researcher should be
able to choose and tune the set of fuzzers to avoid the
saturation of the fuzzing campaign. This methodology is a
first step towards a fuzzers debugger that is highly demanded
by the security research community.

4. Implementation

We created an HTML page comprised of 4 views and a
filtering panel and all the components were created using
the D3.JS library.

4.1. Testcases Scatterplot

The scatterplot (Fig. 3) has, as both axes, a linear scale
where the points are color-coded to represent a category
to help the analyst distinguish the similarity in the clusters
highlighted and the presence of outliers.

By brushing over the scatterplot a routine is called to
update the other 3 views with the highlighted elements by
selecting the corresponding nodes in the Generation graph
and inserting lines in both plots.

The user can also zoom in and out and both axes are
scaled appropriately.

Figure 3: Testcases scatterplot

4.2. Coverage Growth and Interesting Testcases
Plots

The Coverage graph (Fig. 4) plots the growth over time
of the number of covered edges, the Interesting Testcase
graph (Fig. 5) plots the number of new interesting test cases
over time instead, for both the bottom axis is implemented as
a linear scale, for the first graph the left axis is implemented
as a logarithmic scale, for the latter a linear scale is used
instead.

When data is selected on the scatterplot or graph vertical
lines appear in both plots at the corresponding time having
the stroke color matching the fuzzing technique.

We also implemented a pan and zoom functionality that
keeps the lowest value pinned at the bottom.

Figure 4: Coverage growth plot

Figure 5: Interesting Testcases plot

4.3. Generation Graph

The Generation Graph (Fig. 6) is created as a hierarchi-
cal layout where each data point’s value is displayed as a
node label.

The user can zoom as well as pan over the entire view
to have a better understanding of the data and when a node
is selected in the other a routine is called to highlights
the corresponding points in the scatterplot and insert lines
in the other plots. A mouseover on node lowlights all the

nodes except the hovered nodes and their neighbor nodes
and edges.

Figure 6: Generation graph

4.4. Filtering Panel

The user can filter the data shown an all the 4 views by
time, with a range slider (Fig. 7) located at the bottom right
of the page, and by category, by clicking on the category
names directly on top of the slider, the filtering works by
updating the existing graphs without redrawing.

Figure 7: Filtering panel

5. Concluding Remarks

FUZZSPLORE brings a useful visualization-based
method to retrieve insights from running fuzzers in a cam-
paign.

It defines a long-term visual analytics feedback loop ap-
plied to fuzzing with a set of data retrieval and visualization
techniques that can be easily extended in future works.

The information that a security researcher can collect
using our approach can help in understanding the problem
of saturation in fuzzing campaigns, a widely spread problem
that is rarely addressed in academic literature.

We share FUZZSPLORE as Free and Open Source Soft-
ware at https://github.com/andreafioraldi/FuzzSplore.

References

[1] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“REDQUEEN: fuzzing with input-to-state correspondence,” in 26th
Annual Network and Distributed System Security Symposium, NDSS,
2019. [Online]. Available: https://www.ndss-symposium.org/ndss-
paper/redqueen-fuzzing-with-input-to-state-correspondence/

[2] S. Poeplau and A. Francillon, “Systematic comparison of symbolic
execution systems: Intermediate representation and its generation,”
in Proceedings of the 35th Annual Computer Security Applications
Conference, ser. ACSAC ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 163–176. [Online]. Available:
https://doi.org/10.1145/3359789.3359796

[3] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’18. New
York, NY, USA: Association for Computing Machinery, 2018,
p. 2123–2138. [Online]. Available: https://doi.org/10.1145/3243734.
3243804

[4] S. Österlund, K. Razavi, H. Bos, and C. Giuffrida, “ParmeSan:
Sanitizer-guided Greybox Fuzzing,” in USENIX Security, Aug.
2020. [Online]. Available: Paper=https://download.vusec.net/papers/
parmesan sec20.pdfCode=https://github.com/vusec/parmesan

[5] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “Afl++ : Combining
incremental steps of fuzzing research,” in 14th USENIX Workshop
on Offensive Technologies (WOOT 20). USENIX Association,
Aug. 2020. [Online]. Available: https://www.usenix.org/conference/
woot20/presentation/fioraldi

[6] J. Wang, Y. Duan, W. Song, H. Yin, and C. Song, “Be sensitive
and collaborative: Analyzing impact of coverage metrics in greybox
fuzzing,” in 22nd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2019). Chaoyang District, Beijing:
USENIX Association, Sep. 2019, pp. 1–15. [Online]. Available:
https://www.usenix.org/conference/raid2019/presentation/wang

[7] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler, “The
Fuzzing Book,” https://www.fuzzingbook.org/, 2019, [Online; ac-
cessed 10-Sep-2019].

[8] K. Cooper and L. Torczon, Engineering a Compiler: International
Student Edition. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2003.

[9] “Circumventing Fuzzing Roadblocks with Compiler Transforma-
tions,” https://lafintel.wordpress.com/2016/08/15/circumventing-
fuzzing-roadblocks-with-compiler-transformations/, 2016.

[10] C. Aschermann, S. Schumilo, A. Abbasi, and T. Holz, “Ijon: Explor-
ing deep state spaces via fuzzing,” in IEEE Symposium on Security
and Privacy (Oakland), 2020.

[11] K. Serebryany, “Oss-fuzz-google’s continuous fuzzing service for
open source software,” in USENIX Security Symposium, 2017.

[12] A. Groce and J. Regehr, “The Saturation Effect in Fuzzing,” https:
//blog.regehr.org/archives/1796.

[13] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

https://github.com/andreafioraldi/FuzzSplore
https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/
https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/
https://doi.org/10.1145/3359789.3359796
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
Paper=https://download.vusec.net/papers/parmesan_sec20.pdf Code=https://github.com/vusec/parmesan
Paper=https://download.vusec.net/papers/parmesan_sec20.pdf Code=https://github.com/vusec/parmesan
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/raid2019/presentation/wang
https://www.fuzzingbook.org/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://blog.regehr.org/archives/1796
https://blog.regehr.org/archives/1796

	1 Introduction
	2 Background
	3 Methodology
	3.1 Data Retrieval
	3.2 Visualization
	3.2.1 Testcases Scatterplot
	3.2.2 Coverage Growth Plot
	3.2.3 Interesting Testcases Plot
	3.2.4 Generations Graph

	3.3 Analyst Feedback

	4 Implementation
	4.1 Testcases Scatterplot
	4.2 Coverage Growth and Interesting Testcases Plots
	4.3 Generation Graph
	4.4 Filtering Panel

	5 Concluding Remarks
	References

