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Abstract   
From  face  recognition  systems  installed  in             
phones  to  self-driving  cars,  the  field  of  AI                 
is  witnessing  rapid  transformations  and  is             
being  integrated  into  our  everyday  lives  at               
an  incredible  pace.  Any  major  failure  in               
these  system’s  predictions  could  be           
devastating,  leaking  sensitive  information         
or  even  costing  lives  (as  in  the  case  of                   
self-driving  cars).  However,  deep  neural           
networks,  which  form  the  basis  of  such               
systems,  are  highly  susceptible  to  a             
specific  type  of  attack,  called  adversarial             
attacks.  A  hacker  can,  even  with  bare               
minimum  computation,  generate      
adversarial  examples  (images  or  data           
points  that  belong  to  another  class,  but               
consistently  fool  the  model  to  get             
misclassified  as  genuine)  and  crumble  the             
basis  of  such  algorithms.  In  this  paper,  we                 
compile  and  test  numerous  approaches  to            
defend  against  such  adversarial  attacks.           
Out  of  the  ones  explored,  we  found  two                 
effective  techniques,  namely  Dropout  and           
Denoising  Autoencoders,  and  show  their           
success  in  preventing  such  attacks  from             
fooling  the  model.  We  demonstrate  that             
these  techniques  are  also  resistant  to             
both  higher  noise  levels  as  well  as               
different  kinds  of  adversarial  attacks           
(although  not  tested  against  all).  We  also               
develop  a  framework  for  deciding  the             
suitable  defense  technique  to  use  against             
attacks,  based  on  the  nature  of  the               
application  and  resource  constraints  of  the             
Deep   Neural   Network.   
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1.   Introduction   

1.1   Context   
The  generous  availability  of  fast           
computing  power  and  storage  at  lower             
costs,  coupled  with  a  rapid  proliferation  of               
connected  devices,  has  led  to  a  drastic               
increase  in  the  volume,  velocity,  and             
variety  of  data  being  generated.  This  big               
data  revolution  has  heralded  a  new  wave               
of  Machine  Learning  techniques  called           
Deep  Learning  (performance  comparison         
shown  in  Fig  1),  which  focuses  on  using                 
Deep  Neural  Networks  to  perform           
complex  tasks  such  as  Real-Time  Object             
Detection,  and  even  Cancer  Detection,           
sometimes  achieving  a  similar         
performance  as  human  experts  in  the             
field.     

  

Fig   1   -   Performance   of   Different   Techniques   vs   
Size   of   Data   

  
Due  to  their  high  performance,  Deep             
Neural  Networks  are  being  readily           
deployed  on  numerous  tasks  across           
diverse  domains,  from  healthcare  and           
marketing  to  more  sensitive  areas  such  as               
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security  and  safe  transportation.  Although           
these  models  were  originally  thought  to             
be  robust  to  a  wide  range  of  inputs,  a                   
recent  paper  by  Ian  Goodfellow,  et  al.               
showed  that  such  Neural  Networks  are,  in               
practice,  highly  vulnerable  to  finely  tuned             
input  data.  In  their  paper,  the  authors               
demonstrated  that  by  carefully  probing           
the  Neural  Network,  and  modifying  the             
input  image  as  required,  they  could             
generate  “adversarial  examples”,  images         
or  data  points  that  belong  to  another               
class,  but  consistently  fool  the  model  to               
get   misclassified   as   genuine.   

  
Furthermore,  their  paper  showed  that           
generating  such  images  didn’t  even           
require  access  to  the  original  Deep  Neural               
Network.  Even  a  smaller  Network,  trained             
to  perform  a  similar  task  could  be  probed,                 
and  with  a  high  probability,  the  same               
image  would  fool  the  deeper  inaccessible             
model  as  well.  This  has  severe             
implications  since  attackers  don’t  need  to             
break  any  form  of  encryption  to  fool               
important  Deep  Neural  Networks  such  as             
ones  for  Face  Verification.  Instead,  they             
need  only  large  amounts  of  data,  which  is                 
generally   publicly   accessible.   

  
Over  time,  more  research  has  been  done               
on  the  field,  and  researchers  have             
discovered  numerous  methodologies  for         
orchestrating  such  attacks,  some  even           
faster  than  the  original  method.  However,             
this  research  has  not  received  the             
attention  it  should  have.  Due  to  this,  many                 
commercially  deployed  networks  are         
vulnerable  to  such  attacks,  causing           
significant   risk   to   society.     

  
  
  
  

  
  
  
  

  
  

         Input   Image               Face   Recognized   by   NN   
Fig   2   -   An   Adversarial   Attack,   where   a   Man   is   

recognized   as   a   woman,   with   very   distinct   
features    [Reference   25]   

  
For  example,  Mahmood  Sharif,  et  al.             
showed,  in  their  paper  “Accessorize  to  a               
Crime:  Real  and  Stealthy  Attacks  on             
State-of-the-Art  Face  Recognition”,  that         
they  fooled  a  Deep  Neural  Network             
trained  for  face  verification,  to  identify  a               
man  (with  distinct  features)  as  a  verified               
person,  when  in  reality,  the  only  verified               
person  was  a  woman  with  different  skin               
colour  (as  seen  in  Figure  2).  Moreover,               
they  were  able  to  design  a  system  to                 
impersonate  any  person  with  just  a  single               
photograph  of  them,  which  is  easily             
obtainable  from  the  internet.  This  has             
serious  implications  in  places  where  Face             
Verification  is  commonly  used,  such  as             
China,  where  many  restaurants  and  stores             
now  support  payments  through         
automated  Face  Verification  systems.         
Using  the  system  shown  in  the  paper               
above,  an  attacker  could  potentially           
impersonate  any  other  citizen  to  purchase             
products  in  their  name,  leading  to  large               
scale   financial   frauds   

  
Another  example  is  that  of  safe             
transportation.  Researchers  at  the  Keen           
Security  Lab  have  shown  that  they  were               
able  to  fool  a  Tesla  self-driving  car  to                 
accelerate  to  45  miles  per  hour  despite               
seeing  a  stop  sign,  with  simple  vandalism               
like  additions  (as  seen  in  Fig  3).  This  could                   
be  a  major  safety  hazard  once  self-driving               
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cars  are  available  commercially.  Such           
attacks  could  lead  to  more  frequent             
crashes   and   even   fatal   injuries.     

Fig   3   -   An   Adversarial   Stop   Sign:   Recognized   
by   the   AI   as   a   45   Miles   per   hour   sign [Reference   7]   

  
There  are  numerous  other  places  where             
such  attacks  could  bear  a  huge  cost  to                 
society.  For  example,  Deep  Neural           
Networks  are  now  being  commonly  used             
to  help  identify  skin  cancer.  An  image  of                 
benign  skin  cancer  can  easily  be  turned               
into  a  malignant  one  with  minimal  noise               
addition  and  vice  versa  (as  seen  in  Fig  4).                   
With  the  lack  of  transparency  in  some               
hospitals,  this  could  lead  to  numerous             
false   diagnoses.   

Fig   4   -   A   Benign   Skin   Cancer   image   that   can   
be   turned   into   a   Malignant   one    [Reference   24]   

1.2   Problem   Statement   
Hence,  the  need  arises  for  simple,             
effective  and  robust  techniques  to  make             
Deep  Neural  Network  immune  to  such             
attacks.  In  this  paper,  we  first  implement               
two  major  adversarial  attack  techniques           

and  measure  the  decline  in  accuracy  of  a                 
baseline  Neural  Network  against  both           
techniques.  We  then  explore  some  of  the               
existing  defense  mechanisms  and  gauge           
their  effectiveness  of  such  defenses           
against  a  variety  of  factors  and  gauge               
their  effectiveness  and  compare  the           
improvement  in  accuracy.  Finally,  we           
conclude  on  which  combination  of           
defenses   works   best.     

2.   Literature   Review   

2.1   Related   Papers   
In  the  original  paper  on  Adversarial             
attacks  (Ian  Goodfellow,  et  al.),  the             
authors  showed  that  Deep  Neural           
Networks  (DNNs)  are  highly  sensitive  to             
the  changes  in  the  input,  meaning  that  the                 
model’s  confidence  in  a  prediction           
changed  very  quickly  as  the  input  image               
was  changed.  They  then  narrowed  the             
perturbation  space  to  see  if  the  DNN  was                 
still  highly  sensitive  to  small  changes  to               
even  a  few  pixels  in  the  image.  This                 
observation  led  them  to  try  and  fool  the                 
model  by  adding  small  amounts  of  noise               
to  the  input.  They  aimed  to  add  a  small                   
enough  amount  of  noise  for  the  image  to                 
look  unaltered  or  easily  recognizable  as  a               
human,  yet  fool  a  Deep  Neural  Network.               
They  were  successful  in  their  attempt,             
showing   the   weakness   of   such   Networks.     

  
Discovering  such  attacks,  Ian  Goodfellow,           
et  al.  defined  adversarial  examples  as             
follows:   “Adversarial  examples  are  inputs           
to  machine  learning  models  that  an             
attacker  intentionally  designed  to  cause           
the   model   to   make   mistakes”.   

  
Similar  results  were  also  produced  for             
Convolutional  Neural  Networks  on  image           
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tasks.  This  method,  called  the  Fast             
Gradient  Sign  Method  (described  in  detail            
later),  can  very  quickly  generate  effective             
adversarial  examples.  As  a  prevention           
technique,  researchers  tried  retraining  the           
Deep  Neural  Network  on  data  that             
included  adversarial  examples  (known  as           
adversarial  training),  and  they  were  able             
to  increase  the  performance  of  the             
network.  However,  subsequent  research         
showed  that  small  modifications  such  as             
increased  noise  levels  and  unique  base             
images  rendered  the  adversarial  training           
technique   futile.  

  
However,  until  now,  all  attacks  were             
untargeted,  meaning  that  the         
misidentified  class  could  not  be  chosen            
ex-ante  by  the  attacker.  Further  research             
showed  that  by  iteratively  changing  the             
input  image,  researchers  were  able  to  fool               
a  model  to  believe  any  input  image               
belonged  to  a  particular  class  of  their               
choice.  This  type  of  attack  is  known  as  a                   
targeted  attack  and  is  described  later  on               
in  the  paper.  For  a  more  general  approach                 
to  counter  adversarial  attacks,  denoising           
was  introduced,  where  pixels  with  a  value               
more  than  a  certain  threshold  were  set  to                 
the  brightest  value,  and  those  without             
were  removed.  This  approach  worked  for             
baseline  systems.  However,  with  large           
increases  in  noise,  the  denoising  approach             
didn’t  work,  as  the  threshold  couldn’t  be              
tuned  in  real-time.  Moreover,  such  an             
approach  is  not  feasible  in  larger  datasets               
such  as  ImageNet,  where  the  intensity  of               
the   pixel   is   important   in   the   task.     

  
Further  research  (Madry  et  al  2017),  was               
aimed  at  training  Deep  Neural  Networks             
to  be  more  resilient  to  attacks,  by               
choosing  appropriate  training  data  and           

including  adversarial  examples  from  a           
specific   type   of   attack.     

3.Implementation   Strategy   

3.1   Dataset   -   MNIST  
I  have  used  the  standard  Hand  Digit               
Recognition  MNIST  dataset  to  conduct  all             
my  experiments.  This  dataset  contains           
60000  train  and  10000  test  images  of               
various  handwritten  digits,  from  0  to  9.               
The  images  are  grayscale,  having  a             
dimension  of  28  by  28  pixels.  This  dataset                 
is  one  of  the  baseline  datasets  on  which  a                   
lot  of  existing  research  has  been             
formulated.  Also,  the  Deep  Neural           
Networks  trained  on  this  dataset  are             
manageable  on  a  personal  computer,  so  it               
will  be  easier  to  run  multiple  experiments               
quickly.  Finally,  since  Deep  Neural           
Networks  can  easily  achieve  high           
performance  on  this  dataset,  I  will  be  able                 
to  focus  more  on  techniques  to  prevent               
adversarial  attacks  -  which  is  the  primary               
focus  of  this  work  -  rather  than               
developing  a  good  baseline  neural           
network   for   digit   recognition.     

3.2   Evaluation   Methodology   
The  evaluation  methodology  is  based  on             
three  factors,  the  accuracy  of  Deep  Neural               
Networks,  robustness  to  higher  noise           
levels,  and  the  technique  used  to  generate               
the   adversarial   examples.     

  
More  concretely,  for  the  MNIST  dataset,  I               
use  the  NN’s  accuracy  to  compare             
different  techniques,  since  this  is  the  most               
commonly  used  metric  for  benchmarking           
on  this  dataset.  This  is  also  an  appropriate                 
metric  since  all  digits  have  almost  equal               
representation  in  the  train  and  test  set,  so                 

4   



An   Empirical   Review   of   Adversarial   Defenses   
  

  
any  artificially  high  accuracy  due  to  class               
imbalance   is   avoided.   

  
For  measuring  the  robustness  of  the  Deep               
Neural  Networks  against  noise,  I  evaluate             
the  NN’s  accuracy  against  different           
increasing  values  of   for  the  FGSM         ε        
attack  method.  However,  extremely  high           
values  of   are  avoided,  since  the  images       ε            
would  then  become  pure  noise  rather             
than  adversarial  examples.  This  will  help             
us  to  evaluate  which  Neural  Networks  are               
the  most  robust  since  many  techniques             
only   work   for   very   low   or   high   values   of     ε  

  
Another  important  aspect  to  a  good             
defense  against  adversarial  attacks  is           
their  capability  to  defend  against  various             
kinds  of  attacks  since  the  attacker  has  a                 
wide  array  of  attack  techniques  to  choose               
from.  Hence,  for  NN’s  that  score  well               
against  larger  values  of   in  the  FGSM          ε        
technique,  I  evaluate  their  accuracy           
against  the  PGD  technique,  to  see  if  they                 
are  still  robust  across  attack  techniques,             
which  will  help  increase  confidence  in  the               
durability   of   the   defense.   

4.   Baseline   Set-up   
For  evaluation  of  different  attacks  on  a               
Neural  Network,  we  created  a  baseline             
Neural  Network  trained  only  on  the             
standard  MNIST  database.  Our  model  had             
3  convolutional  layers,  followed  by  a             
Max-Pooling  layer.  Finally,  we  had  a             
Dropout  layer  and  3  other  Dense  Layers               
(Neural  Network  Graph  in  Appendices).           
The  Neural  Network  was  trained  for  20               
epochs  on  the  standard  dataset  by  which               
the   validation   accuracy   peaked   at   98%.   

  
Accuracy  of  a  baseline  classifier  against             
attack   methods:   

Table   1   -   Accuracy   of   Baseline   Network   
against   different   attacks   

  
As  we  can  see,  the  same  Neural  Network                 
that  was  able  to  classify  images  with  a                 
98%  accuracy  now  has  an  accuracy  of               
around  23%,  showing  how  susceptible           
Neural  Networks  are  even  for  relatively             
simple  tasks.  While  both  attack  methods             
reliably  generate  adversarial  examples,         
we  can  see  that  the  PGD  attack  technique                 
is  a  stronger  and  more  reliable  way  to                 
generate  adversarial  examples  since  it           
fools  the  NN  a  higher  percentage  of  the                
time.     

5.Defenses,   Results   &   
Comparison   

5.1   Adversarial   Training   
In  the  seminal  paper  on  adversarial             
attacks  by  Ian  Goodfellow,  et  al.,             
researchers  found  that  training  the  neural             
network  on  adversarial  examples  helps           
improve  Neural  Network  robustness  to           
some  extent.  However,  new  papers           
following  this  research  showed  even  a             
small  increase  in  the  amount  of  noise  (i.e                 
an  increase  in  the  value  of  )  would               ε    
render  this  defense  method  useless.  Since             
this  is  one  of  the  most  basic  prevention                 
techniques,  it  can  act  as  a  good               
benchmark  to  compare  the  effectiveness           
of  techniques  proposed  in  this  paper.  For               
training  data,  I  converted  all  of  the               
training  data  points  into  adversarial           

5   

Attack   
Method   

Baseline   
Model   

Accuracy   

Accuracy   
Reduction   

Due   to   Attack  

FGSM    23%    75%   

PGD    20%    78%   
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examples  (creating  60,000  adversarial         
examples)  with  an   of  0.1.  To  also  make         ε            
sure  that  our  model  doesn’t  forget  how  to                 
classify  normal  genuine  examples,  we           
also  included  the  entire  training  set,             
making  a  total  of  120,000  images.  When               
training  the  model,  I  found  that  Neural               
Networks  would  very  quickly  overfit  to             
adversarial  examples.  Whereas  a         
standard  model  could  train  on  the  MNIST               
dataset  for  20  epochs  without  overfitting,             
when  training  on  adversarial  examples,           
within  2-3  epochs,  the  NN  started             
overfitting  to  the  adversarial  examples  we             
provided.  Thus,  if  trained  for  longer,  it  did                 
not  perform  well  on  adversarial  examples             
generated  from  the  test  set.  After  training               
the  NN  for  an  appropriate  number  of               
epochs,  we  found  that  it  had  an  accuracy                 
of  61%  against  adversarial  examples.           
Also,  I  found  that  increasing  the  noise  by  a                   
small  amount  (from   to  ,          0.1  ε =         0.2  ε =    
the  effectiveness  of  this  technique  went             
down  drastically,  to  a  level  similar  to  the                 
baseline   Neural   Network.   

5.2  Denoising  with  a  constant      
threshold   
Another  defense  mechanism  frequently         
mentioned  is  denoising  images  with  a             
threshold [Reference  5] .  For  image-based  tasks,           
this  means  that  we  choose  a  certain               
threshold   and  if  a  pixel  value  is  > ,    α               α  
then  it  is  set  to  be  the  maximum  value                   
(255),  else  if  it  is  < we  set  it  to  0.  This            α            
technique  can  effectively  clean  genuine           
(normal)  images,  as  well  as  images  with               
low  noise  (low  values  of  ),  but  not             ε      
images  with  high  amounts  of  noise.  The               
reason  for  this  is  that  the  value   is  not                α      
dynamic,  meaning  that  it  is  a  constant  for                 
a  given  model.  Hence,   has  to  be  tuned          α          
such  that  it  allows  enough  number  of               

pixels  to  pass  through  the  filter  to  be  able                   
to  make  sense  of  the  image  (such  as  the                   
pixels  showing  the  7  in  Fig  5),  but  also                   
not  allow  too  many  noisy  pixels  to  pass                 
through  (such  as  the  ones  in  the               
background).  This  is  one  of  the  main               
reasons  behind  the  weakness  of  this             
defense.  After  experimenting  with         
different  thresholds,  I  arrived  at   =  30%            α      
of  255  (meaning  that  a  pixel  with  more                 
than  76.5  intensity  will  be  set  to  255)  as                   
an  appropriate  threshold.  After  denoising           
with  this  threshold,  the  Neural  Network             
was  able  to  achieve  91%  accuracy  on  the                 
adversarial  examples.  However,  upon         
increasing  the  value  of  ,  the  NN            0.3  ε =        
dropped  to  an  accuracy  of  5%,  which  is                 
even  worse  than  randomly  guessing  the             
digit  (which  would  have  a  10%  accuracy).               
The  reason  for  this  is  that  with  higher                 
levels  of  noise,  many  more  background             
pixels  were  able  to  pass  through  the  filter                 
and  received  a  higher  brightness,           
resulting  in  pronounced  noise  in           
“denoised”  images  (as  shown  in  Fig  5).               
The  same  is  true  for  the  PGD  attack,  due                   
to  its  ability  to  choose  a  few  pixels  and                   
add  high  amounts  of  noise  to  those  pixels                 
(which   can   pass   the   filter).   

  
  
  
  
  
  
  
  

High   noise   Adversarial            Denoised   Adversarial   
Fig   5   -   Effect   of   High   Noise   Adversarial   on   

Denoising   with   a   Constant   Threshold   
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5.3   Neural   Network   to   Flag   
Adversarial   Examples   
Adversarial  examples  are  deliberately         
designed  to  fool  a  Neural  Network,  and  so                 
have  malicious  applications.  If  we  can  find               
a  way  to  flag  images  as  adversarial,  we                 
can  remove  them  from  the  classification             
process,  preventing  Neural  Networks  from           
getting  fooled.  Such  a  system  should  have               
higher  accuracy  in  test  sets  contaminated             
by   adversarial   examples.   

  
Adversarial  examples  are  very  diverse  in             
nature,  even  more  than  genuine  images.             
Hence,  an  approach  to  learn  to  generalize               
to  all  kinds  of  adversarial  examples  would               
be  to  train  another  Deep  Neural  Network               
whose  only  objective  is  to  detect  and  flag                 
potentially  adversarial  examples.  Thus,         
making  a  successful  adversarial  example           
now  entails  perturbing  the  image  to             
circumvent  two  models,  which  effectively           
reduces  the  chance  of  success  for  any               
given   adversarial   example.   

  
For  this  Neural  Network  (to  flag             
adversarial  examples),  we  used  a  smaller             
neural  network  because  the  task  is  much               
simpler  in  complexity  compared  to  digit             
recognition.  This  network  had  2           
Convolutional  layers,  followed  by  a           
Dropout  layer  and  2  Dense  layers  (Neural               
Network   Graph   in   the   appendices).   

  
This  technique  worked  reasonably  well           
for  flagging  adversarial  examples         
generated  using  the  Fast  Gradient  Sign             
Method.  After  excluding  potential         
adversarial  examples  (as  flagged  by  the             
Neural  Network),  the  final  classifier  had             
an   accuracy   of   83%.   

  

This  technique  also  generalized  to  higher             
noise  adversarial  examples  (for   =  0.2           ε      
and  0.3).  However,  to  test  if  this  technique                 
generalized  to  different  attack  methods,           
we  tested  its  accuracy  against  the  PGD               
attack.  Here,  the  system  only  flagged             
50%  of  the  adversarial  images  correctly,             
making   the   final   accuracy   60%.     
Moreover,  this  suggests  that  such  a             
flagging  system  may  do  even  worse             
against  other  types  of  attacks  (since  it               
didn’t  even  generalize  to  PGD,  another             
gradient-based  attack  like  FGSM),  so  it             
doesn’t  make  a  strong  defense.  These             
results   are   summarized   in   Table   2.   

Table   2   -   Results   for   Flagging   Adversarial   
Examples   

5.4   Batch   Normalization   at   Test   Time   
Batch  Normalization,  as  a  technique,  has             
been  used  to  help  Neural  Networks             
generalize  better  to  unseen  images.  With             
standard  neural  networks,  each  layer  of             
neurons  is  dependent  on  the  outputs  of               
the  previous  layer  of  neurons.  However,  in               
the  training  process,  all  neurons  update             
their  weights  with  every  batch  to  better               
understand  the  image.  Hence,  the  inputs             
of  later  layers  of  neurons  (same  as  the                 
outputs  of  earlier  layers  of  neurons)  are               
different  each  time  the  neural  network             
sees  the  same  image  during  training,             
making  it  harder  for  these  later  neurons  to                 
update  their  weights  accurately.  Batch           
Normalization  normalizes  the  outputs  of           

7   

Method             Baseline     
         Accuracy   

Flagging   
Adversarial   
Examples   
Accuracy   

FGSM     
( )   0.1  ε =    

23%    83%   

PGD    20%    60%   



An   Empirical   Review   of   Adversarial   Defenses   
  

  
each  layer  of  neurons  (same  as  the  inputs                 
of  later  neurons)  in  a  neural  network.               
Hence,  following  layers  of  neurons  can             
learn   faster.   

  
In  the  current  implementation  of  Batch             
Normalization,  the  mean  and  standard           
deviation  used  for  normalization  is           
calculated  using  only  training  data  and             
then  used  for  normalizing  test  data.  Due               
to  this,  adversarial  examples  still  have  the               
capability  to  change  the  mean  and             
standard  deviation  of  the  outputs  of             
different  layers  of  a  Neural  Network  and               
have  repercussions  on  the  outputs  of  the               
final   layer.     

  
One  potential  approach  to  defend  against             
adversarial  attacks  would  be  to  calculate             
the  mean  and  standard  deviation  used  in               
normalization  for  every  image  that  the             
neural  network  sees  (irrespective  of           
whether  it  is  a  train  or  test  image).  Hence,                   
any  change  in  inputs  caused  by             
adversarial  examples  will  be  suppressed,           
since  they  will  be  re-normalized  and  will               
have   a   smaller   impact   on   later   layers.   

  
For  this  approach,  we  trained  a  fresh               
neural  network  with  similar  architecture           
as  the  baseline,  but  with  a  Batch               
Normalization  layer  after  every         
Convolutional  or  Dense  layer.  When  run             
against  adversarial  examples  developed         
with  the  FGSM  method  ( ),  this            0.1  ε =      
modified  network  had  an  accuracy  of             
69%,  compared  to  the  23%  accuracy  of               
the  baseline  model.  Even  with  higher             
levels  of  noise  ( ),  the  model  still          0.2  ε =          
had  a  much  higher  accuracy,  which  shows               
the   robustness   of   this   defense   method.     

  
However,  given  the  accuracy  of  69%  was               
still  low  on  an  absolute  basis,  this  method                 

was  not  able  to  provide  the  acceptable               
level  of  resilience  even  against  a  single               
attack  method  (FGSM).  Hence,  we  didn’t             
test  on  adversarial  examples  generated           
by   the   PGD   attack.   

Table   3   -   Results   for   Batch   Normalization   at   
Test   Time   

5.5   Dropout   at   Test   Time   
Dropout  is  a  commonly  used           
regularization  technique  to  prevent  Neural           
Networks  from  overfitting  to  the  training             
data.  Dropout,  as  the  name  suggests,             
randomly  drops  a  chosen  percentage  of             
the  neurons  from  layer(s)  during  training.             
This  way,  the  Neural  Network  architecture             
changes  every  time  it  sees  a  new  image                 
during  training  (as  the  combination  of             
neurons  present  is  different),  so  it  has  to                 
learn  to  distribute  information  amongst           
more  neurons  rather  than  relying  only  on               
a  handful  of  neurons  (since  these  few               
neurons  might  disappear  randomly).         
However,  this  is  currently  used  only             
during  training,  so  when  making           
predictions,  the  entire  Neural  Network  is             
preserved   in   original   form.   

  
This  technique  could  even  be  used  when               
making  predictions  (in  other  words,  at  test               
time)  to  help  defend  against  adversarial             
examples.  The  reason  it  might  work  is               
that  without  dropout,  it  is  likely  that  a                 
Neural  Network  will  rely  only  on  a  few                 
neurons,  which  in  turn  rely  only  on  a  few                   
pixels  of  the  image,  to  make  predictions.               
Adversarial  examples  would  change         
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these  few  pixels  and  would  be  able  to                 
disrupt  these  neurons’  predictions  and           
hence   the   entire   NN’s   predictions.     

  
However,  by  dropping  neurons,  we  use  a               
different  set  of  pixels  of  an  image  every                 
time  we  make  a  prediction,  so  it  becomes                 
harder  to  generate  adversarial  examples.           
This  is  because  it  is  impossible  to  know                 
which  neurons  will  be  dropped  in  advance               
(and  hence  which  set  of  pixels  will  be                 
used   in   the   final   classification).   

  
The  problem  with  dropout,  however,  is             
that  it  reduces  the  NN’s  standard  accuracy               
a  lot  since  it  has  fewer  neurons  and  hence                   
less  information  to  make  a  decision.  Thus,               
the  amount  of  dropout  (percentage  of             
neurons  dropped  in  each  layer)  needs  to               
be  tuned  based  on  the  trade-off  of               
adversarial  accuracy  and  standard         
accuracy.     

  
To  find  the  optimum  dropout  levels,  I  used                 
a  grid  search  method  (a  brute  force               
approach  that  tries  out  all  possible  values               
within  a  specified  range  and  picks  the               
value  with  the  best  performance)  and             
evaluated  different  levels  of  dropout.  To             
retain  a  high  level  of  performance,  I  chose                 
to  use  dropout  in  3  of  the  5  layers  of  the                       
neural  network,  because  dropping         
neurons  from  more  than  3  layers  would               
have   resulted   in   a   poor   baseline   accuracy.     

  
My  optimization  objective  for  determining           
the  best  dropout  percentage  level  was             
accuracy.  However,  I  split  this  accuracy             
into  two  parts:  accuracy  on  standard  test               
data  and  accuracy  on  adversarial  test  data               
(an  adversarial  version  of  the  test  images).               
Final  accuracy  was  computed  on  a             
weighted  average,  where  the  weights           
could  be  tuned  based  on  the  application.               

In  this  case,  I  chose  an  equal  weight  of  0.5                     
for   both   validation   datasets.   

  
After  running  the  grid  search  (changing             
dropout  for  one  layer  at  a  time),  I  arrived                   
at  the  following  optimal  dropout  values             
for   each   layer:   

  
The  grid  search  results  intuitively  make             
sense  since  the  middle  layers  of  a  neural                 
network  have  a  larger  number  of  neurons               
as  compared  to  later  layers,  and  hence               
can  afford  a  higher  percentage  of  dropped               
neurons  without  losing  valuable         
information.  The  table  below  summarizes           
the  accuracy  of  the  model  trained  with  the                 
above   dropout   values.   

Table   4   -   Adversarial   Results   for   Dropout   at   
Test   Time   

  
As  seen  in  Table  4,  dropout  at  test  time                   
gave  a  significantly  higher  accuracy  of             
79%  against  the  FGSM  method  compared             
to  the  baseline  accuracy  of  only  23%.               
Moreover,  this  technique  performed  well           
against  higher  values  of  as  well,             ε    
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although  the  accuracy  was  lower  here.             
This  technique  even  generalized  well  to             
the  PGD  attack  method  (even  for  higher               
noise  levels,   =  0.3)  as  it  retained  a  high       ε                
accuracy  of  62.5%  as  compared  to  the               
baseline  accuracy  of  20%.  This  decline  in               
accuracy  across  attack  methods  was           
expected  since  PGD  is  a  stronger  attack               
as  depicted  by  a  lower  accuracy  of  the                 
baseline   network.   

5.6   Denoising   Autoencoders   
Autoencoders  are  neural  network         
architectures  made  up  of  two  symmetric             
neural   networks   (as   shown   in   figure   6).     

  
Fig   6   -   General   Structure   of   an   Autoencoder   
The  first  network  is  an  encoder,  which               
encodes  a  high  dimensional  input  image             
into  a  small  array  of  real  numbers  (of  say                   
size  10).  The  second  network  is  a  decoder                 
which  takes  in  this  small  array  of  real                 
numbers  and  tries  to  reconstruct  the             
entire   original   input   image.     

  
Autoencoders  are  one  of  the  few             
categories  of  neural  networks  that  are             
unsupervised  by  design,  meaning  that  the             
label  of  the  image  is  not  required,  only  the                   
images  themselves  are  required.  Hence,           
they  can  be  used  to  perform  general  tasks                 
for  a  wide  variety  of  images.  One               
application  of  autoencoders  is  denoising           
images.  As  shown  by  researchers,           

autoencoders  can  learn  to  clean  relatively             
high  noise  images  (non-adversarial)         
extremely   well.     

  
Adversarial  examples  are  also,  in  a  way,               
noisy  images,  where  the  noise  is  carefully               
calculated.  A  Denoising  Autoencoder  will           
not  distinguish  between  artificial  noise           
and  adversarial  noise  and  attempt  to             
clean  both  similarly.  Hence,  a  denoising             
autoencoder  could  potentially  clean  and           
remove  noise  from  all  images  before             
feeding  them  to  the  standard  neural             
network,   thus   boosting   model   accuracy.   

  
We  trained  a  denoising  autoencoder  to             
encode  a  28  by  28  MNIST  image  into  a                   
16-dimensional  array,  which  was  again           
decoded  back  to  a  28  by  28  image  after                   
removing  noise.  Our  autoencoder         
performed  very  well  against  images  with             
randomly   added   noise,   as   shown   in   Fig   7.   

  
  Original        Noisy   Image    Reconstructed   
    Image     (Random   Noise) Denoised   Image   

  
Fig   7   -   Visual   Results   of   Denoising   

Autoencoder   on   Random   Noise   
  

First,  I  trained  the  denoising  autoencoder             
on  images  with  artificially  added  random            
noise  for  30  epochs,  followed  by  training               
on  adversarial  examples  for  2  epochs.  To               
complete  the  pipeline,  we  first  feed  all               
input  images  (adversarial  or  not)  through             
the  denoising  autoencoder  to  generate  a             
denoised  image.  These  denoised  images           
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were  then  fed  to  the  baseline  Neural               
Network  for  classification.  After  running           
this  pipeline  on  an  unseen  test  batch  of                 
adversarial  examples,  we  observed  an           
accuracy  of  84%.  Moreover,  this  pipeline             
generalized  well  for  higher  noise  levels  as               
well  as  the  PGD  attack,  mainly  because              
autoencoders  can  easily  learn  to  remove             
general   noise.   

Table   5   -   Adversarial   Results   for   using   a   
Denoising   Autoencoder   to   clean   images   

  
When  investigating  images  where  the           
entire  network  failed  to  classify           
adversarial  examples  correctly,  I  found           
that  more  often  than  not,  the  mistake               

could  be  attributed  to  the  denoising             
autoencoder’s  failure  to  clean  the  images             
(example   shown   in   Fig   8).   

  
Predicted   Label   (by   
standard   model)   -   9   
True   Label   -   4   

  
  
  

  

  
Fig   8:   A   denoised   adversarial   image   

  
However,  we  hypothesize  that  with  an             
even  larger  training  set  of  noisy  and               
adversarial  images,  our  autoencoder  could           
reconstruct  images  with  higher  fidelity           
and  improve  the  adversarial  accuracy           
even  beyond  84%.  Moreover,         
advancements  in  autoencoders  could  also           
help  generate  better  reconstructions  of           
the  noisy  input  image,  which  could  further               
increase  the  effectiveness  of  this           
technique.   
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Model    Standard 
Accuracy   

FGSM   
Accuracy  

   0.1  ε =    

PGD 
  &    0.1  ε =    

   0.3  ε =    

Standard   
Model   

98%    23%    20%   

Denoising   
AutoEncoder  
+   Standard   

Model   

  
95%   

  
84%   

  
65%   
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6.   Discussion   

Table  6  is  a  summary  of  the  results  of  all  the  defense  techniques  proposed  in  this                                 

paper.   

  

*   More   than   40%   accuracy   for      0.2  ε =    

**   More   than   50%   accuracy   for   PGD   attack   

Table   6   -   Summary   of   Results   for   All   Defenses   

6.1  Summary  of  Approaches  and       
Results   
From  table  6,  we  can  clearly  see  the  need                   
for  strong,  robust  defenses  against           
adversarial  attacks,  since  a  baseline           
model  which  had  an  accuracy  of  98%  on                 
standard   images,   had   an   accuracy   of     

  

only  23%  when  run  against  adversarial             
examples.     

  
However,  a  good  defense  against           
adversarial  examples  should  not  only  be             
able  to  have  high  adversarial  accuracy,  but               
also  be  able  to  generalize  to  higher  noise                 
levels.  Else,  attackers  could  simply           
increase  the  noise  by  a  small  amount  and                 
render  the  defense  useless.  Also,  due  to               
the  wide  variety  of  attack  methods  for               

12   

Model    Standard   

Accuracy   

Adversarial   

Accuracy   

Generalizes   

Noise*   

Generalizes   

Attack**   

  

Baseline   CNN   

  

98%   

  

23%   

  

No   

  

-   

  

Current   Defenses   

Adversarial   Training    98%    61%    No    -   

Denoising   with   Constant   

Threshold   

98%    91%    No    -   

  

Proposed   Defenses   

Flagging   Adversarial   

Examples   

97%    83%    Yes    No   

Batch   Normalization   (test   

time)   

97%    69%    Yes    -   

Dropout   (test   time)    96%    79%    Yes    Yes   

Denoising   AutoEncoder    95%    84%    Yes    Yes   
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attackers  to  choose  from,  a  defense             
should  be  general  enough  to  work  on               
different   attack   methods.     

  
The  techniques  currently  used  to  defend             
against  such  attacks  are  adversarial           
training  and  denoising  with  a  constant             
threshold.  From  the  table,  we  can  see  that                 
adversarial  training  had  better  accuracy,           
although  not  enough  for  practical           
purposes,  and  didn’t  generalize  to  higher             
noise  levels.  The  reason  for  this  is  that                 
adversarial  training  requires  a  variety  of             
adversarial  examples,  but  generating  a           
wide  enough  sample  is  extremely  difficult             
due  to  the  variety  of  attack  methods  and                 
noise  levels  available.  Denoising  with  a             
constant  threshold,  on  the  other  hand,             
had  an  extremely  high  adversarial           
accuracy.  However,  since  the  threshold  for             
denoising  is  not  dynamic,  higher  noise             
levels  were  able  to  pass  through  and               
reduce  the  accuracy  to  even  worse  than               
randomly  guessing  the  digit.  In  such             
cases,  the  denoising  defense  was  actually             
hurting   the   accuracy   rather   than   helping.   

  
We  first  experimented  with  the  potential             
idea  of  flagging  adversarial  examples           
with  another  Neural  Network.  This           
approach  had  a  high  adversarial  accuracy             
as  it  was  accurately  able  to  flag               
adversarial  examples  generated  by  the           
FGSM  method.  However,  when  moving           
onto  different  attack  types  (in  this  case               
PGD),  it  was  only  able  to  flag  50%  of  the                     
adversarial  examples,  letting  the  other           
50%  pass  through  and  reduce  the  model’s               
accuracy.  This  may  have  been  because             
this  approach  needs  adversarial  examples           
generated  from  a  variety  of  attack             
methods,  which  is  not  practical  in  real-life               
applications.     

  

We  then  tested  the  usage  of  a  technique                 
called  Batch  Normalization  to  be  used             
during  test  time  as  well,  instead  of  only                 
during  training.  This  approach,  however,           
got  an  adversarial  accuracy  of  69%,  which               
was  relatively  low  compared  to  other             
methods.  Even  though  it  generalized  to             
higher  noise  levels,  the  initial  adversarial             
accuracy  was  too  low  to  be  used               
practically.   

  
Finally,  we  see  that  both  Dropout  at  test                 
time  and  Denoising  Autoencoders  have  a             
high  adversarial  accuracy  (although         
Autoencoders  are  slightly  better),  and  are             
also  able  to  generalize  to  higher  amounts               
of  noise,  as  well  as  the  type  of  attack.  The                     
difference  between  these  two         
approaches,  however,  mainly  lies  in  the             
computational   complexity.   

  
Autoencoders  are  much  more         
computationally  expensive  since  they  are           
themselves  made  up  of  two  smaller             
Neural  Networks.  For  an  image  to  be               
classified  using  the  autoencoder  pipeline,           
it  has  to  first  be  encoded  by  the  encoder,                   
then  decoded  to  be  cleaned  by  the               
decoder,  and  then  passed  through  the             
baseline  model.  On  the  other  hand,             
Dropout  at  test  time  is  negligibly  more               
expensive  than  the  standard  baseline           
model  and  can  run  much  faster  than  a                 
Denoising   Autoencoder.   

6.2  Deciding  on  the  Appropriate       
Defense   
Based  on  these  observations,  the  choice             
of  defense  depends  upon  the  resources             
available  for  the  application.  Upon           
comparing  the  time  difference  between           
Autoencoder  and  the  Dropout  model  for             
predicting  labels  for  10000  images,  we             
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found  that  the  Autoencoder  took  8x  more               
time  as  compared  to  the  Dropout  model,               
clearly  illustrating  the  difference  in           
computational   complexity.   

  
Applications  that  permit  bulkier  Neural           
Networks,  such  as  server-based         
operations,  should  make  use  of  a             
denoising  autoencoder,  due  to  its  higher             
accuracy  and  robustness  (scaling  up  to             
other  attack  methods  and  noise).           
However,  applications  that  involve  edge           
ML  (running  Neural  Networks  on  small             
processors  such  as  phones  or  watches),             
should  make  use  of  the  dropout  at  test                 
time  as  a  primary  defense,  because  of  its                 
light   resource   requirement.   

  
However,  Dropout  has  an  extremely           
strong  regularization  effect,  so  when  used             
at  test  time,  it  reduces  standard  accuracy               
significantly.  For  a  dataset  like  MNIST,  it               
was  possible  to  find  a  dropout  level  that                 
maintained  a  substantial  standard         
accuracy  and  improved  adversarial         
accuracy  as  well.  There  might  be             
applications  where  an  extremely  high           
standard  accuracy  is  required,  for           
example,  biometrics,  and  here,  dropout           
may  reduce  the  standard  accuracy  to  an               
unacceptable  amount.  Hence,  in  such           
applications,  they  may  be  forced  to  use               
the  Denoising  Autoencoder  even  if  it  is               
more   computationally   expensive.   

6.3   Limitations   and   Future   Work   
Currently,  in  this  paper,  we  have  explored               
the  robustness  of  defenses  against  only             
the  FGSM  and  PGD  attack  methods.             
Although  this  gives  some  insight  into             
which  defenses  would  generalize,  it  is             
important  to  still  evaluate  these  defenses             

against  other  attack  methods,  especially           
non-gradient   based   approaches.   

  
Moreover,  the  MNIST  dataset  is  a             
grayscale  dataset.  However,  further         
experimentation  needs  to  be  done  to             
validate  that  an  effective  autoencoder  can             
be  set  up  even  for  more  complex  image                 
datasets,  with  special  focus  to  RGB             
images.   

  
Finally,  we  have  also  focused  on             
untargeted  attacks  as  part  of  the             
evaluation  methodology  discussed  in  this           
paper.  Future  work  should  be  done  to               
ensure  that  such  defenses  are  resilient             
against  targeted  attacks  as  well,  but  we               
hypothesize  that  our  results  should  still             
hold   against   targeted   attacks.   

7.   Conclusion   
This  paper  demonstrates  the  threat           
adversarial  examples  pose  to         
commercially  deployed  Deep  Neural         
Networks  by  fooling  a  high  scoring  Neural               
Network  using  two  different  attack           
methods  (FGSM  and  PGD).  To  establish  a               
baseline  for  comparing  different  defenses,           
the  MNIST  dataset  was  preferred  due  to               
large  amounts  of  data  availability  as  well               
as  the  relative  simplicity  of  the  task.  This                 
paper  then  also  proposes  a  methodology             
for  comparing  defenses  by  using  a  variety               
of  factors:  adversarial  accuracy,         
robustness  to  higher  noise  levels  as  well              
as   the   type   of   attack.     

  
We  then  experimented  with  current           
defense  mechanisms  and  evaluated  their           
performance  on  our  developed  metric,  and             
demonstrated   that   they   are   exploitable.     
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Upon  comparison  of  different  defense           
methods,  using  our  metric,  we  found  that               
Dropout  at  test  time  and  Denoising             
Autoencoders  were  the  most  robust           
methodologies  to  safeguard  against         
adversarial  attacks  and  scaled  well  for             
higher  noise  levels  as  well  as  different               
types  of  attacks.  Upon  further  comparison             
between  methodologies,  we  concluded         
that  for  applications  with  easy  access  to               
computational  power,  a  denoising         
autoencoder  should  be  used,  whereas  for             
applications  with  limited  access  to           
computation  power,  the  dropout  at  test             
time   approach   should   be   used.   
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Appendix   

Source   Code   
https://github.com/Yushgoel/AdversarialAttack   

Neural   Network   Architectures   

Baseline   Neural   Network: Neural   Network   to   Flag   Adversarial     
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Batch   Normalization       |       Dropout   at   Test   Time    |          Denoising   Autoencoder   
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