
Java 2 Micro Edition security
vulnerabilities

HITB Security Conference, 4-7th October 2004, Kuala Lumpur, Malaysia

Discovered, researched and presented by

ADAM GOWDIAK

INTRODUCTION
ABOUT PSNC

 The leading research, network and supercomputing facility
in Poland

 Operator of the Metropolitan Area Network and Polish
National Academic Network (PIONIER)

 Leader of many research projects funded by the Polish
State Committee for Scientific Research and European
Community

 Center of Excellence for GRIDs

INTRODUCTION
ABOUT SECURITY TEAM OF PSNC

 Security administration of the PIONIER network
infrastructure and PSNC’s supercomputing resources

 Performing real-life, large scale penetration tests and
security audits of software for third parties (both commercial
and educational ones)

 Participation as security consultants in research projects
founded by Polish State Committee for Scientific Research,
EC and IT vendors

 Extensive knowledge of attack methodologies and
techniques

 Continuous security vulnerability research

INTRODUCTION
GOAL OF THE PRESENTATION

 Practical security is based both on knowledge about
protection as well as about threats

 Regardless of the very solid security design of Java
technology, there have been many problems in Java VM
implementations in the past

 So far, no problems have been reported in KVM, which
might indicate that its security has been taken on a „as is”
basis

 Showing the „real threat” of a given technology is usually
the only way to build proper awareness among its users, it
also motivates vendors to make a given technology more
secure

JAVA 2 MICRO EDITION
INTRODUCTION

Java 2 Micro Edition (J2ME) has been developed primarily as
a technology for the execution of Java applications on small,
constrained devices with limited resources (mobile phones,
PDAs, TV set-top boxes, in-vehicle telemetry, residential
gateways and other embedded devices).

It has been derived from J2SE (Standard Edition) and has all
of the characteristics of the Java language.

JAVA 2 MICRO EDITION
WHERE DOES IT FIT IN THE JAVA TECHNOLOGY?

DEVICE
DRIVERs

Servers, enterprise
computers

JVM

Java 2
Platform

Enterprise
Edition
(J2EE)

Optional
Packages

DEVICE
DRIVERs

Servers, personal
computers

JVM

Java 2
Platform
Standard
Edition
(J2SE)

Optional
Packages

High-end PDAs, TV
set-top boxes,

Embedded devices

JVM

CDC

Optional
Packages

Foundation
Profile

Personal
Profile

Mobile phones entry
level PDAs

KVM

CLDC

Optional
Packages

MIDP

Smart cards

Card
VM

JavaCard

Java 2 Platform, Micro Edition
(J2ME)

JAVA 2 MICRO EDITION
KEY CONCEPTS

 Configuration
In J2ME jargon, a `configuration' is a set of hardware
functionality made available to applications through a JVM.
J2ME defines two basic configurations: CDC and CLDC

 Profile
`Profile' is J2ME jargon for the API exposed by the J2ME
implementation. There are four basic profiles defined by the
J2ME specifications: MIDP, Foundation, Basis, and
Personal

JAVA 2 MICRO EDITION
KEY CONCEPTS (2)

 CDC and CLDC (Connected Device Configuration and
Connected Limited Device Configuration)
Specifications for the basic JVMs that a J2ME device must
support. CDC and CLDC are not really APIs (although
CLDC does specify a basic API), but run-time
environments. The heart of a given CDC/CLDC
implementation is the Java Virtual Machine.

 MIDP (Mobile Information Device Profile)
The API exposed by small mobile devices with graphical
displays. MIDP is the most widely supported API.

JAVA 2 MICRO EDITION
K-VIRTUAL MACHINE

The K Virtual Machine (KVM), a key feature of the J2ME
architecture, is a highly portable Java virtual machine designed
from the ground up for small memory, limited-resource,
network-connected devices such as cellular phones, pagers,
and personal organizers.

KVM is suitable for 16/32-bit RISC/CISC microprocessors with
a total memory budget of no more than a few hundred
kilobytes (128-256 kB out of which 40-80 kB is needed for the
VM itself and the rest is reserved for configuration and profile
class libraries)

J2ME SECURITY ARCHITECTURE
SECURITY MODEL

The security model of J2ME is defined at two levels:
 Low-level (Virtual Machine) security

It ensures that the applications running in the virtual
machine follow the semantics of the Java programming
language, and that an ill-formed or maliciously-encoded
class file does not crash or in any other way harm the
target device.

In a standard Java Virtual Machine implementation, low-
level security is guaranteed by the bytecode (class file)
verifier.

J2ME SECURITY ARCHITECTURE
SECURITY MODEL (2)

 Application level security
In CLDC, application-level security is accomplished by
using a metaphor of a closed “sandbox.” An application
must run in a closed environment in which the application
can access only those libraries that have been defined by
the configuration, profiles, and other classes supported by
the device. Java applications cannot escape from this
sandbox or access any libraries or resources that are not
part of the predefined functionality. The sandbox ensures
that a malicious or possibly erroneous application cannot
gain access to system resources.

J2ME SECURITY ARCHITECTURE
THE SANDBOX MODEL

The sandbox model requires that:
 The downloading, installation, and management of Java

applications on the device takes place in such a way that
the application programmer cannot modify or bypass the
standard class loading mechanisms of the virtual machine.

 A closed, predefined set of Java APIs is available to the
application programmer, as defined by CLDC, profiles
(such as MIDP) and manufacturer-specific classes.

J2ME SECURITY ARCHITECTURE
THE SANDBOX MODEL (2)

The sandbox model also requires that:
 The set of native functions accessible to the virtual

machine is closed, meaning that the application
programmer cannot download any new libraries containing
native functionality or access any native functions that are
not part of the Java libraries provided by CLDC, profiles or
manufacturer-specific classes.

J2ME SECURITY ARCHITECTURE
ADDITIONAL SECURITY RESTRICTIONS

A CLDC implementation shall ensure that:
 the application programmer cannot override, modify, or add

any classes to these protected system packages,
 the application programmer is not allowed to manipulate

the class file lookup order in any way,
 by default, a Java application can load application classes

only from its own Java Archive (JAR) file.

J2ME SECURITY ARCHITECTURE
JAVA LANGUAGE SECURITY FEATURES

In Java, security of data is imposed on a language level
through the use of access scope identifiers (private, protected,
public and default) limiting access to classes, field variables
and methods.

Java also enforces memory safety (through VM) since security
of mobile code can be seen in a category of the secure
memory accesses.

J2ME SECURITY ARCHITECTURE
JAVA LANGUAGE SECURITY FEATURES (2)

 Garbage collection
 - memory can be implicitly allocated but not freed

 Type safety
 - strict type checking of instruction operands
 - no pointer arithmetic

 Runtime checks
 - array accesses
 - cast operations

 UTF8 string representation

J2ME SECURITY ARCHITECTURE
DIFFERENCES FROM J2SE

The following Java language features have been eliminated in
CLDC because of library changes or security concerns:

 Java Native Interface (JNI)
 User-defined class loaders
 Reflection
 Thread groups and daemon threads
 Finalization
 Weak references
 Errors

J2ME SECURITY ARCHITECTURE
BYTECODE VERIFIER

Bytecode verifier ensures that the bytecodes and other items
stored in class files cannot contain illegal instructions, cannot
be executed in an illegal order, and cannot contain references
to invalid memory locations or memory areas that are outside
the Java object memory (the object heap).

Bytecode verifier ensures that Java code is type safe and
adheres to the semantics of the Java programming language.

J2ME SECURITY ARCHITECTURE
BYTECODE VERIFIER (2)

Bytecode Verifier checks that:

 code does not forge pointers,

 class file format is OK,

 code does not violate access privileges,

 class definition is correct,

 code does not access one sort of object as if it were
another object.

J2ME SECURITY ARCHITECTURE
BYTECODE VERIFIER (3)

Bytecode Verifier guarantees that:

 no stack overflows occur,

 no stack underflows occur,

 all local-variable uses and stores are valid,

 bytecode parameters are all correct,

 object fields accesses (public/private/protected) are legal.

J2ME SECURITY ARCHITECTURE
CLASS FILE VERIFICATION

The existing J2SE bytecode verifier defined in Java Virtual
Machine Specification is not ideal for small, resource-
constrained devices:

 It takes a minimum of 50 kB binary code space, and at least
30-100 kB of dynamic RAM at runtime,

 CPU power needed to perform the iterative dataflow
algorithm in the conventional verifier can be substantial.

J2ME SECURITY ARCHITECTURE
CLASS FILE VERIFICATION (2)

New approach to class file verification based on a two-phase
verification process has been implemented in J2ME:

 off-device pre-verification during which J2SE bytecode
verifier is used to preverify the bytecodes and special stack
map attributes are added into class files to facilitate runtime
verification

 runtime verification with stack maps

J2ME SECURITY ARCHITECTURE
STACKMAP ATTRIBUTE

Stackmap attributes describe the state of stack and local variables for code
locations that can be reached across several different execution paths (the
case for conditional/uncoditional branches, but also exception handlers)

0: aload_0

1: ifnull 11

4: aload_0

5: invokevirtual java/lang/Object/toString()Ljava/lang/String;

8: goto 13

11: ldc NULL_STRING

13: areturn

public static valueOf(Ljava/lang/Object;)Ljava/lang/String;

Code attribute

Stackmap subattribute

number_of_entries 0002

field value

entry[0]

entry[1]

Stackmap entry

bytecodeOffset

field value

numberOfLocals

typesOfLocals

numberOfStackItems

typesOfStackItems

11

1

0

java/lang/Object

Stackmap entry

bytecodeOffset

field value

numberOfLocals

typesOfLocals

numberOfStackItems

typesOfStackItems

13

1

1

java/lang/String

NULL_STRING

J2ME SECURITY ARCHITECTURE
BYTECODE VERIFICATION ALGORITHM

Bytecode Verification algorithm is based upon data-flow
analysis. It is done by modeling the execution of every
single bytecode instruction and by inspecting every
execution path that can actually occur in a code of a
given method.

For each instruction, information about the number of
registers used, the stack height and the types of values
contained in registers and the stack are maintained (state
information).

J2ME SECURITY ARCHITECTURE
BYTECODE VERIFICATION ALGORITHM (2)

Linearly iterate through code and for each instruction:
 Verify instruction operands (types)
 Simulate execution of the instruction
 Compute new state information
 If necessarily, match the derived state with any stack map

entries recorded for any successor instructions that do not
directly follow the current instruction

 Detect any type incompatibilities
More detailed information about the bytecode verification algorithm can be
found in a supplement to the CLDC Specification - “CLDC Byte Code
Typechecker Specification” by Gilad Bracha, Tim Lindholm, Wei Tao and
Frank Yellin

J2ME SECURITY ARCHITECTURE
POTENTIAL WEAK POINTS

There are several J2ME architecture components that are
critical for its security. This includes:

 Bytecode verifier
 KVM Runtime (execution engine)
 JIT compiler (currently only relevant for Monty VM)
 Core CLDC and MIDP classes
 Vendor specific classes (com.symbian.*, com.sun.*,

com.nokia., etc.)
 Native methods implementation

KVM VULNERABILITIES
GOTO BYTECODE VERIFIER FLAW

0: goto 666

 public <init>()V

Code attribute

Stackmap subattribute

number_of_entries 0001

field value

entry[0]

Stackmap entry

bytecodeOffset

field value

numberOfLocals

typesOfLocals

numberOfStackItems

typesOfStackItems

666

1

0

ITEM_InitObject (java/lang/Object)

666: ???

 Bytecode verifier does not check whether the target of the goto
instruction is within the code limits of the current method

 It only verifies whether there exists a proper Stackmap entry
corresponding to the target of the goto instruction

KVM VULNERABILITIES
GOTO_W BYTECODE VERIFIER FLAW

 Before checking whether the target of the goto_w instruction is legitimate,
bytecode verifier casts 32 bit offset from the instruction (denoting the
target of a jump) to 16 bits (the length of the bytecode offset from a
Stackmap entry)

 In a result bytecode verifier follows wrong execution path (jump offset 0)

0: goto 305397760

 public <init>()V

Code attribute

Stackmap subattribute

number_of_entries 0001

field value

entry[0]

Stackmap entry

bytecodeOffset

field value

numberOfLocals

typesOfLocals

numberOfStackItems

typesOfStackItems

305397760

1

0

ITEM_InitObject (java/lang/Object)

305397760: ???

305397760&0xffff=0

KVM VULNERABILITIES
EXPLOITATION

 In a result of both goto and goto_w bytecode verifier
flaws, jumping to arbitrary bytecode locations outside of
the current method code can be done

 Since bytecode verifier operates on a single method basis,
it is possible to escape the KVM sandbox and to execute
Java bytecodes from the unverified execution path

 This opens the whole range of other attack possibilities
aiming to circumvent type safety of the Java language in
order to get full access to the device memory

KVM VULNERABILITIES
EXPLOITATION (2)

Class B

0: aload_1

 public castObject2int(Ljava/lang/Object;)I

Exploitation method

0: iload_1

 public dummy(I)I

Helper method

1: goto -location

Class A

location number

of bytes

1: ireturn

2: ireturn

3: ireturn

4: ireturn

...

N: ireturn

Stackmap subattribute

number_of_entries 0001

field value

entry[0]

Stackmap entry

bytecodeOffset

field value

numberOfLocals

typesOfLocals

numberOfStackItems

typesOfStackItems

-location

1

0

ITEM_Object (java/lang/Object)

Proper memory layout of Java classes is necessary

in order to reliably transfer control from exploitation

method in class B to helper method in Class A.

KVM allocates memory from the top of the heap -

this implicates the memory layout of the two

methods.

KVM VULNERABILITIES
EXPLOITATION RELIABILITY

KVM heap

Heap top - the base ptr for next
malloc() operation

lower addresses

higher addresses

Class A
METHODTABLE

Class B
METHODTABLE

Class B
FIELDTABLE

Class of Class B

Class of Class A

INSTANCE OBJECT
(CLASS A)

UNUSED SPACE

UNUSED SPACE

UNUSED SPACE

KVM heap is allocated from
higher to lower addresses.

GC is aware of every
dynamically created Java
object. Every Java object
has a GC header, which
contains information about
the object type and size.

KVM heap

Heap top - the base ptr for next
malloc() operation

Class A
METHODTABLE

Class B
METHODTABLE

Class B
FIELDTABLE

Class of Class B

Class of Class A

INSTANCE OBJECT
(CLASS A)

UNUSED SPACE

GC operation changes
the whole layout of the
Java heap.

Since addresses of
dynamic Java objects
constantly change in time
it is difficult to rely on
them in longer time
period. This obviously
influences the reliability
of the interclass goto
jump.

BEFORE GC operation AFTER GC operation

Garbage Collector
compacts the memory on
user request through
System.gc() or upon
detecting that there is no
free space required for
the next Java malloc()
operation

KVM VULNERABILITIES
EXPLOITATION RELIABILITY (2)

In order to avoid IllegalBytecode exception thrown in a
result of executing the goto instruction after changing the
dynamic memory layout by GC, one can change the body of
the exploitation method in such a way, so that there would be
proper ireturn instruction in its code instead of the goto
one.

For that purpose, memory safety must be broken first and
several interclass goto jumps must be made. However, upon
proper exploit code implementation this will never trigger the
GC operation before patching a given Java method.

KVM VULNERABILITIES
EXPLOITATION RELIABILITY (3)

It is advised to always use the ireturn instruction (instead
of areturn) at the end of Java methods doing casts from
arbitrary memory addresses to arbitrary object references in
order to avoid the interaction with GC.

KVM VULNERABILITIES
IMPACT

13Siemens
7Samsung
5Panasonic
40 (excl. PersonalJava)Nokia
21Motorola
6LG
13 (excl. PersonalJava)Sony Ericsson
2Alcatel

Number of phone models with
Java (CLDC 1.0 only)

Vendor

KVM VULNERABILITIES
IMPACT (2)

Only CLDC 1.0 implementations were taken into account while
preparing the table from the previous slide (I haven’t tested any
CLDC 1.1 device). Until vendors confirm that a given device is
vulnerable, this table should be treated as presenting only
potentially vulnerable devices.

The complete list of J2ME devices can be found at SUN
Microsystem’s website:

http://jal.sun.com/webapps/device/device

BREAKING JAVA TYPE SAFETY
INTRODUCTION

Because Java is a type safe language, any type conversion
between data items of a different type must be done in an
implicit way:

 primitive conversion instructions (i2b, i2c, i2d, i2f, i2l, i2s,
l2i, l2f, l2d, f2i, f2l, f2d, d2i, d2l, d2f),

 checkcast instruction,

 instanceof instruction.

BREAKING JAVA TYPE SAFETY
TYPE CONFUSION ATTACK

The type confusion condition occurs in a result of a flaw in one
of the Java Virtual Machine components, which creates the
possibility to perform cast operations from one type to any
unrelated type in a way that violates the Java type casting
rules.

The goal is to perform illegal cast and to access memory
region belonging to an object of one type as if it was of some
other unrelated type

BREAKING JAVA TYPE SAFETY
TYPE CONFUSION ATTACK (2)

CLASS TRUSTED

private Object var;

fields

THIS CLASS PTR

OBJECT DATA PTR

var

object instance

SRC OBJECT PTR

BEFORE TYPE CONFUSION ATTACK

AFTER TYPE CONFUSION ATTACK
spoofedptr=BlackBox.cast2SpoofedClass(objptr);

Object o=spoofedptr.var;

objptr

getfield TRUSTED/var Ljava/lang/Object;

bytecode field descriptor

getfield requires object ptr and field descriptor

JVM RUNTIME throws exception

since var field has private access

CLASS TRUSTED

private Object var;

fields

THIS CLASS PTR

OBJECT DATA PTR

var

object instance

SRC OBJECT PTR

objptr

getfield SPOOFED/var Ljava/lang/Object;

field descriptor

getfield requires object ptr and field descriptor

JVM RUNTIME allows to access public field var

from object instance of class TRUSTED (!)

CLASS SPOOFED

public Object var;

fields

Object o=objptr.var;

bytecode

BREAKING JAVA TYPE SAFETY
TYPE CONFUSION ATTACK (4)

In J2SE type confusion attacks are possible since there are no
runtime checks done for getfield/putfield instructions with
regard to the types of their arguments.

They are also possible in J2ME, but need to be modified a bit
to reflect different environment and specifically the fact that:

 system classes are in ROM
 bytecodes are interpreted (not compiled into native code)
 Field and methods are looked up dynamically by a hash key

computed from a field/method descriptor

BREAKING JAVA TYPE SAFETY
TYPE CONFUSION ATTACK (5)

If not modified, classic type confusion attack would not work in KVM,
since fieldLookup(thisClassPtr,field/method descriptor) operation
would always return NULL for spoofed field descriptors and system
classes.

TYPE CONFUSION ATTACK IN KVM
spoofedptr=BlackBox.cast2SpoofedClass(objptr);

Object o=spoofedptr.var;

JVM RUNTIME allows to access public field var

from object instance of class TRUSTED (!)

Copy of CLASS TRUSTED

field table ptr

THIS CLASS PTR

OBJECT DATA PTR

var

object instance

SRC OBJECT PTR

objptr

getfield TRUSTED/var Ljava/lang/Object;

bytecode field descriptor

getfield requires object ptr and field descriptor

FIELDTABLE

public Object var;

RAM ROM

CLASS TRUSTED

field table ptr

BREAKING MEMORY SAFETY
INTRODUCTION

The goal of breaking memory safety is to obtain unlimited read
and write access to the native memory of a host device.

Memory safety can be easily broken with the use of type
confusion attack.This can be accomplished in at least two
ways:

 through field variable
 through table of bytes

BREAKING MEMORY SAFETY
USE OF THE FIELD VARIABLE

public Class Spoofed {
 public int value;
}

int spoofptr=BlackBox.cast2SpoofedClass(ADDR-0x0c)

spoofptr.value can be now read or written what will result
in a read or write access to the memory location ADDR

BREAKING MEMORY SAFETY
USE OF THE TABLE OF BYTES

mtab=new byte[12];
/* set table size to 2^32-1 */
mtab[8]=mtab[9]=mtab[10]=mtab[11]=(byte)0xff;
/* get addr of fake array obj header */
int base=BlackBox.cast2int(mtab)+0x0c;
/* do the cast */
static int mem[]=cast2arrayOfBytes(base);

((int)mem[ADDR-base-0x0c])&0xff can be now read or
written what will result in a read or write access to the memory
location ADDR

GAINING CODE EXECUTION ACCESS
HOW TO

SOURCE CODE OF DUMMY CLASS

public class Dummy {

 public Dummy() {

 }

 public void jump() {

 }

}

Native code execution can be gained by changing the

method table of a given class in such a way, so that:

- target method has type changed from java to native

- method address points to user provided code

CLASS DUMMY

method table ptr

THIS CLASS PTR

OBJECT DATA PTR

var

object instance

THIS PTR

objptr

invokevirtual Dummy/jump()V

bytecode method descriptor

invokevirtual requires object ptr and method descriptor

METHODTABLE

methodnum 2

RAM

METHOD DESCRIPTOR[0]

name: <init>

type: public, java

code:

METHOD DESCRIPTOR[1]

name: jump

type: public, native

code:

<init> method code

jump method code

aload_0

invokevirtual java/lang/Object/<init>()V

return

stmfd sp!,{r0-r12,lr}

adr r0,base

ldr r1,base

ldrb r2,[r1]

strb r2,[r0,#4]

ldmfd sp!,{r0-r12,pc}

GAINING CODE EXECUTION ACCESS
RELIABILITY ISSUES

Due to the Garbage Collector behavior, placing assembly
instructions to execute in a dynamically allocated Java object
(i.e. array of integers) might cause some reliability problems if
the code to execute is to be used in long-term, it is the code for
the callback or message handler.

In such a case it is much better to use the native OS memory
allocation routine for the purpose of obtaining stable memory
region.

ACCESSING PROTECTED METHODS
CLASS SPOOFING

Getting access to some protected Java/native methods of the
system classes can be accomplished in the following way:

 create the instance of your own Dummy class, with a
dummy method and public access (it is important to use the
same method name/descriptor as in the spoofed class)

 put the pointer to the method table from the spoofed class
to your Dummy class

 invoke a given method from a Dummy class – this will result
in the invocation of the corresponding method from the
spoofed system class since its method table would be in use

SPOOFING SYSTEM METHODS
CLASS SPOOFING (2)

Class spoofing can be also used for:
 getting access to some protected fields from system

classes (in this case field table needs to be spoofed)
 changing definition of some methods from system classes.

This considers both Java as well as native code.

Spoofing system classes turns out to be very useful in the
case where execution of the system methods needs to be
changed (i.e. some security checks/user dialogs need to be
bypassed/avoided).

REVERSE ENGINEERING
THE TARGET DEVICE

NOKIA 6310i
 Tri-band world phone - works in three networks on five continents
 Downloadable personal applications via Java- technology
 GPRS (general packet radio service)
 HSCSD (high speed data)
 Bluetooth support
 WAP 1.2.1 browser (over GRPS or CSD)
 Wallet , Customizable and timed profiles, Clock and alarm clock
 Calculator, currency converter, Stopwatch, countdown timer
 Voice commands, voice recorder
 Connectivity options: Bluetooth, infrared, and cable

The so called „closed” DCT4 phone:
 flashes are available for it only in encrypted form
 no way to execute any other user code on it than Java

/browse filesystem etc.

REVERSE ENGINEERING
TASK DEFINITION

To find out what is actually possible to do from within the
untrusted midlet application exploiting one of the bytecode
verifier flaws in the environment of the Nokia 6310i phone.

Task input:
Java midlet escaping the KVM sandbox and breaking memory
safety (can read/write memory and execute ARM code on a
device).

REVERSE ENGINEERING
STEP 1: PEEK AND POKE IN MEMORY

By peeking and poking in native device memory it is possible
to obtain information about the visible address space. It is also
possible to locate many C strings - those which are of special
interest here usually begin with „java/” or „com/nokia”.

These strings can reveal information about what unpublished,
vendor specific classes are implemented by a given device:
com.nokia.mid.impl.isa.io.protocol.wap.Protocol

com.nokia.mid.impl.isa.jam.Jam

com.nokia.mid.impl.isa.ui.MIDletManager

com.sun.cldc.io.j2me.socket.Protocol

...

REVERSE ENGINEERING
STEP 1: PEEK AND POKE IN MEMORY (2)

By peeking and poking in native device memory it is also
possible to obtain information about internal Java objects
representation and specifically:

 object instance representation
 GC header
 Class structure
 method table
 field table

It’s all about testing different Class definitions (different access,
method/field number and types) and creating object instances.

REVERSE ENGINEERING
STEP 2: DISASSEMBLE BYTECODE

By disassembling Java bytecode methods it is possible to find
out detailed information about their operation.

Disassembling Java bytecode is especially profitable since
Java is a type-safe language and any data access/method
invocation must be accompanied in it with a detailed
information about the types of accessed variables/arguments
passed to the invoked method.

REVERSE ENGINEERING
STEP 3: DISASSEMBLE NATIVE CODE

By disassembling native code, information about some system
classes operation can be obtained. This includes J2ME core
system classes as well as vendor specific classes.

It’s good to start from J2ME core system classes since their
descriptor types are known. Knowledge of method arguments
number and types is the first step to find out more about the
way KVM passes arguments to native code.

Looking at the return address register (LR) can reveal the
address of the internal bytecode interpretation loop.

REVERSE ENGINEERING
STEP 3: DISASSEMBLE NATIVE CODE (2)

Disassembling native code can also help:
 Find out how to identify methods/fields in method/field table

by name upon having method hash ID (the code of
java.lang.Class.forName() does it)

 build database of „known subroutines” – this speeds up a
process a bit

 find out more about the internal KVM operation as it is
usually tightly coupled with the underlying operating system
(interprocess communication, permanent memory access,
GPRS communication)

REVERSE ENGINEERING
STEP 3: DISASSEMBLE NATIVE CODE (3)

Disassembling native code can also help:
 locate different debugging subroutines:

 Find out more about the way switch statements are
implemented by the compiler (they are required for more
advanced code analysis/complete call tree walk up/down):
addr rX,switch_table

lsr rY,rY,2

ldr rX,[rX,rY]

mov lr,pc

bx rX

addr rX,”java_server.c, 538: JAVA_LOAD_REQ”

bl print_debug

REVERSE ENGINEERING
STEP 4: SEARCH NATIVE CODE

Searching native code by walking down the whole subroutine
call tree (with switch statements resolving) allows to quickly
detect some specific code patterns. This specifically includes:

 the use of global variables (i.e. LDR reg,=value)
 the use of subroutine calls (i.e. BL location)
 debug strings (i.e. ADDR reg,mem)

Upon previously gathered knowledge about subroutines and
global variables this will usually help identify what a given
subroutine deals with.

REVERSE ENGINEERING
STEP 5: EMULATE NATIVE CODE

Manual analysis of even medium size machine level code
functions is usually very difficult, tiring and it takes a lot of time.

Emulating native code can be very helpful, especially if it is
implemented in such a was so that:
 execution of ARM microprocessor working in THUMB mode

is properly emulated – this specifically concerns emulation
of all ARM THUMB mode instructions and stack operation

 execution of conditional branch instructions automatically
changes current code location to the one that would be
actually taken in a given context (emulation of ZCNV flags)

REVERSE ENGINEERING
STEP 5: EMULATE NATIVE CODE (CONT.)

 the contents of ARM registers, stack and memory is
automatically tracked

 the contents of registers and stack is named apropriately to
the origin of a given value

 step in, step over and runto functionality is supported
 all memory accesses are virtualized (a cache of written

memory is maintained - no writes are actually done to the
device memory, upon reading memory first the cache is
looked up for a given addr)

REVERSE ENGINEERING
STEP 5: EMULATE NATIVE CODE (CONT.)

 the database of known subroutines can be maintained, so
that descriptive name is shown in disassembly instead of a
subroutine addr

 changing between different views can be done easily and in
a way depending from a given context (for example, from
disassembly view, to memory view if a given instruction
references a given address, or from a register view to stack
view if a given register contains pointer to the virtualized
stack)

It would be very difficult, if not impossible, to actually obtain
any interesting results in this work, if code emulation technique
would not have be applied.

REVERSE ENGINEERING
OBSTACLES

There are several obstacles that must be fighted along the
reverse engineering process:

 Nokia 6310i has very painful size limit for a single midlet
JAR archive that can be actually installed onto phone (32
kB is not really much when you plan to write ARM emulator!)

 The phone offers about 160kB of RAM for midlet
application, which is not usually enough

 Analyzing machine level code on a 4-5 lines long display is
very difficult

REVERSE ENGINEERING
STEP 6: SPEEDING UP THE WORK

By locating subroutines that establish communication over wire
with a PC, the whole reverse engineering process can be
speeded up, especially if:

 The whole emulation work is done off-device on a PC with
the use of a debug Agent Midlet running on device

 Agent Midlet is primarily responsible for reading/writing
device memory upon request received over wire from a PC

 PC keeps track of ALL the changes (memory writes,
subroutine invocations) made along the emulation of a
given native code path

REVERSE ENGINEERING
METHOD VIEWER MIDLET

Reverse engineering java.lang.Class.forName() can
help find out more about the KVM class loading process. It can
also help locate subroutines doing class/method/field name
hashing:

private String get_name(int key) {
 int i,k,addr,val,len,size;
 boolean found=false;
 String name=null;

 key&=0xffff;

 addr=STRING_HASHTABLE_ADDR;
 addr=Mem.read_dword(addr);
 size=Mem.read_dword(addr);

 addr=addr+0x08;
 addr=addr+4*(key%size);
 addr=Mem.read_dword(addr);

 while(!found) {
 if (addr==0) break;

 k=Mem.read_word(addr+0x06);
 if (k==key) {
 found=true;
 break;
 }
 addr=Mem.read_dword(addr);
 }
 if (found) {
 len=Mem.read_word(addr+0x04);
 byte[] tab=new byte[len];
 for(i=0;i<len;i++) {
 tab[i]=(byte)Mem.read_byte(addr+0x08+i);
 }
 name=new String(tab,0,tab.length);
 }
 return name;
 }

REVERSE ENGINEERING
METHOD VIEWER MIDLET (2)

Main application view Choosing name of the
class of which methods
to view

Viewing the methods

REVERSE ENGINEERING
ARMulator MIDLET

Callstack view

Registers viewDisassembly view

Memory view

NOKIA OS
BACKGROUND INFORMATION

 Nokia 6310i runs on ARM microprocessor atop of
embedded/RTOS operating system

 There are 0x38 TASKS, which share the same global
memory space (RAM and FLASH memory)

 Tasks communicate with each other with the use of
message passing IPC mechanism

 JAVA_TASK (tasknum 0x36) runs in user_level of ARM
microprocessor and is implemented as one native thread

 Input/output peripherals are handled as memory-mapped
(also globally visible) with interrupt support

NOKIA OS
BACKGROUND INFORMATION (2)

Structures describing Nokia OS tasks (task name, flags,
startaddr, message handler, message queue, etc.) occupy
dedicated memory slots (the same for a given SW version).

This is also the case for global variables, which are always
located at the same memory addresses for a given SW version.

Nokia phone model and software version can be easily
identified by issuing a call to:

java.lang.System.getProperty("microedition.platform")

NOKIA OS
MEMORY MAP

0x00000000 - 0x0000001F Interrupt vectors
0x00000000 Reset Supervisor
0x00000004 Undefined instruction Undefined
0x00000008 Software interrupt Supervisor
0x0000000C Abort (prefetch) Abort
0x00000010 Abort (data) Abort
0x00000014 Reserved Reserved
0x00000018 IRQ IRQ
0x0000001C FIQ FIQ

0x00000020 - 0x000C0000 RAM memory
0x000E0000 - 0x00100000 RAM memory
0x01000000 - 0x017FFFFF Flash Memory for system code and

user data

NOKIA OS
TASKS

[00] MBUS
[01] FBUS
[02] RS232
[03] BT
[04] MDI_RCV
[05] MDI_SEND
[06] STI_RECEIVE
[07] STI_SEND
[08] IRDA
[09] IRDA_MGR
[0a] IRDA_PN
[0b] TERMINAL_ADAPTER
[0c] PN
[0d] MONITOR
[0e] AUDIO
[0f] MTC_CTRL
[10] ACCESSORY
[11] CORE_HI
[12] CORE_LO

[13] OBEX
[14] VRR
[15] VERSIT
[16] FILE
[17] ENERGY
[18] PMM_CLEAN_UP
[19] PMM_WRITE_BACK
[1a] PH
[1b] L2
[1c] RR
[1d] MM
[1e] CC
[1f] RM_CONTROL
[20] LCS
[21] SMS
[22] GSS_SERVER
[23] CS_MAIN
[24] SIM_UPL
[25] SIM_l2

[26] SIM_SERVER
[27] SIMLOCK
[28] BT_IF_RCV
[29] TUNE_CONTROL
[2a] PND
[2b] UI
[2c] CSD_SRV
[2d] CSD_NTB
[2e] CSD_FAX
[2f] SRVS_CKT
[30] WMLS
[31] GPRS
[32] GPRS_RLC_DLUL
[33] GPRS_RLC
[34] GPRS_MAC
[35] GPDS
[36] JAVA
[37] OS_IDLE

NOKIA OS
OBJECTS DIRECTORY

MIDP API provides a mechanism for MIDlets to persistently
store data and later retrieve it (data is not lost after powering
off the phone). This mechanism is available for use through the
javax.microedition.rms.RecordStore class.

RecordStore class does not however contain any native
methods, but it references RecordStoreFile class which
does.

NOKIA OS
OBJECTS DIRECTORY (2)

The following native methods are implemented by the
javax.microedition.rms.RecordStoreFile class:

 static native int spaceAvailable();
 native int sysClose(int i);
 static native int sysCloseDir(int i);
 static native int sysDeleteFile(String s);
 static native int sysExists(String s);
 static native int[] sysGetRMSIds(int i);
 native int sysLength(int i);
 static native int sysOpenDir();
 native int sysOpenFile(String s);
 native int sysRead(int i, byte buf[], int j, int k);
 static native String sysReadDir(int i);
 native int sysSeek(int i, int j);
 native int sysTruncate(int i, int j);
 native int sysWrite(int i, byte buf[], int j, int k);

NOKIA OS
OBJECTS DIRECTORY (3)

Reverse engineering native methods from the
RecordStoreFile class revealed the way how file system
objects (files and directories) are stored in permanent memory
(FLASH) of the phone.

More detailed investigation of the discovered mechanism
revealed that also some other information pertaining to the
phone operation are stored with the use of this mechanism.
This includes phonebook, SMS messages, audio records,
WAP cache, dialed numbers, etc.

NOKIA OS
OBJECTS DIRECTORY (4)

All objects are looked up

upon their type and ID

Item_num

FLASHBASE_CATALOG1_ADDR

ROOTDIR

low_chain_addr

high_chain_addr

entry 0

item num

high_chain_addr

low_chain_addr

entry 0x6e

...

item num

low_chain_addr

high_chain_addr

entry 0x73

...

FLASHBASE_CATALOG1_SIZE

FLASHBASE_CATALOG2_ADDR

FLASHBASE_CATALOG2_SIZE

FLASHBASE_CATALOG3_ADDR

FLASHBASE_CATALOG3_SIZE

FLASH MEMORY
LOOKUP

type 0x00

type 0x01

type 0x02

type 0x03

type 0x3a

OBJECT IDOBJECT TYPE

0x00150x9d

...

...

PHONEBOOK

type 0x8c

...

SMS messages

type 0x9d Directory

entries

type 0x9f Files

0x6e

0x016b0000

0x0001

0x7adc

0xF4 0x9D 0x0015

OBJECT DATA

0x5F 0xFF 0xFF 0xFF

OBJECT SIZE NEXT CHUNK

0x16c7adc

16b0000+1<<16+7adc

=0x16c7adc

NOKIA OS
OBJECTS DIRECTORY (5)

File system objects hierarchy (0x9d directory entries):
0001 Permanent_memory

0002 gallery
1003 icons
1004 photos

0005 java
0006 applications

000a NokiaConverter
000b Cnv_V5_00_en-GB_pl-PL_de-DE.jad
000c Cnv_V5_00_en-GB_pl-PL_de-DE.jad

0010 NokiaWorld clock
0011 Wclk_V5_00_en-GB_pl-PL_de-DE.jad
0012 Wclk_V5_00_en-GB_pl-PL_de-DE.jar
0014 RMS

0015 zupaTest Midlet
0016 test.jad
0017 test.jar
0018 RMS

0007 games
000d NokiaRacket

000e Rack_V5_00_en-GB_pl-PL_de-DE.jad
000f Rack_V5_00_en-GB_pl-PL_de-DE.jar
0013 RMS

NOKIA OS
INTERPROCESS COMMUNICATION

Reverse engineering native methods from the
com.sun.cldc.io.j2me.socket.Protocol class
revealed information about native Nokia OS (system calls),
processes (process control structures, message handlers,
message buffers) and interprocess communication (the way
messages are sent, callbacks are registered).

All of that was possible due to the fact that open0 method of
the socket class sends a message (FBUS packet with
command 0x83) to the FBUS_TASK and waits for a response.

NOKIA OS
INTERPROCESS COMMUNICATION (2)

Format of messages sent between tasks:

Z ZOZ
MSGID

HI

MSG

LEN

DST

TID

SRC

TID

MSGID HI - high byte of message ID

MSGID LO - low byte of message ID

MSG LEN - length of message (counted from DST TID field)

DST TID - destination task ID

SRC TID - source task ID

DATA - message data

Z - the value of zero was usually observed at this field

ZO - the value of zero or one were usually observed at this field

0 1 2 3 4 6 7 8 9

Z
MSGID

LO
DATA

10

NOKIA OS
INTERPROCESS COMMUNICATION (3)

It is possible to write a message tracing application, that simply
intercepts message handling routine for a given process and
sends messages received to it over wire to the PC.

This can be done from a midlet application since RAM memory
is globally shared among native Nokia OS processes.

By doing so, lots of new information about the phone internal
operation can be obtained.

NOKIA OS
INTERPROCESS COMMUNICATION (4)

It is also possible to install user resident code on the phone,
that would intercept (or influence) communication occuring
between native Nokia OS processes. Exiting Java application
would not end such code provided that:

 proper message handler is intercepted (there are tasks, that
constantly send messages to some other tasks, GSM
network info is one of the examples)

 native malloc is used for storing user message handler
(java malloc cannot be used since JAVA_TASK frees all
allocated memory upon midlet’s exit)

NOKIA OS
INTERPROCESS COMMUNICATION (5)

A list of processes that can have their message handlers
directly intercepted:

MONITOR, AUDIO, ACCESSORY, CORE_HI, CORE_LO, OBEX, VRR, VERSIT,

FILE, ENERGY, PH, GSS_SERVER, CS_MAIN, SIM_SERVER, SIMLOCK,

TUNECONTROL, PND, UI, CSD_SRV, SRVSCKT, WMLS, GPRS, GPRS_RLC_DLUL,

GPRS_RLC, GPRS_MAC, GPDS, JAVA

Messages sent to other tasks, like for example SMS Server
can be also intercepted (it is however not so easy to locate
their message handling routines since these are different
process types).

NOKIA OS
FLASH MEMORY

Although, Java application can persistently store data in
FLASH memory through the RecordStore class, reverse
engineering it didn’t actually reveal any code doing FLASH
writes.

The actual FLASH writing is done upon Java application exit in
the com.nokia.mid.impl.isa.ui.MIDletManager class
(its s_exitInternal method).

RMS buffers are simply cached in RAM during midlet
execution and flushed at its exit (internal RMSFlushBuffers
subroutine is called for that purpose).

NOKIA OS
FLASH MEMORY (2)

There is a FLASH object in RAM which can be used for the
purpose of writing FLASH memory. It contains flash base
address and addresses to several subroutines that issue
commands to FLASH controller :

 program command
 sector erase, erase suspend, erase resume
 sector lock/unlock

NOKIA OS
FLASH MEMORY (3)

Writing FLASH memory can be also done through direct
programming the FLASH controller.

Programming FLASH memory is a four-bus-cycle operation.
The program command sequence is initiated by writing two
unlock write cycles, followed by the program set-up command.
The program address and data are written next, which in turn
initiate the FLASH write operation.

Programming flash can only change bits „1” to „0”. In order to
set bits to „1”, the whole sector must be first erased.

MALICIOUS MIDLETS
STEALING DATA

By accessing the Nokia OS object directory malicious midlets
can access some sensitive data, like phone contact info, SMS
messages or dialed numbers.

It is also very probable that some highly sensitive data (PIN,
IMEI, PUK) can be also stolen from the phone (this haven’t
been verified though).

Stolen data can be further sent to some arbitrary Internet
address with the use of GPRS/WAP connection.

MALICIOUS MIDLETS
CONNECTING TO THE INTERNET

By default, user is warned when untrusted midlet tries to
access Internet. He/she can then decide whether to allow for
such an access or not.

It is possible to bypass this mechanism in the following way:

 set up fake JAD file directory entry in permanent memory
(this entry contains information about the midlet’s Internet
access level), RecordStore class can be used to write to
FLASH, and direct call to internal RMSFlushBuffers
native subroutine will make the changes immediately visible

MALICIOUS MIDLETS
CONNECTING TO THE INTERNET (CONT.)

 change objects directory in RAM, so that it points to the
fake JAD directory entry with Internet access level set to 2
(„don’t ask - access allowed”)

 establish HTTP connection to the Internet
 restore original structure of the objects directory in RAM, so

that original JAD directory entry is in place

MALICIOUS MIDLETS
CHANGING PERMANENT MEMORY

The ability to write permanent memory of the phone is the most
dangerous action that a given malicious midlet can take. This
is particularly caused by the fact that it allows for:

 the change of phone software and potential backdoor
installation (this needs more investigation since there might
exist some checksums protecting against such a change of
phone’s code)

 making the phone unusable by erasing the whole FLASH
memory (it’s only a matter of issuing a chip erase command
which takes just 6 write operations)

MALICIOUS MIDLETS
SENDING SMS MESSAGES

The possibility to communicate with other tasks in the phone
allows to make use of their rich services.

Malicious midlet can silently send SMS messages (text,
picture, etc.) to arbitrary phone numbers with the use of
arbitrary SMS centers and arbitrary message content.

SMS sending can be done with the use of properly formatted
message (MSG ID 0x0202) sent to MDI_SEND task (TASK ID
0x5d).

MALICIOUS MIDLETS
INTERFERING WITH IPC

The possibility to interfere with interprocess communication
actually allows for the interference with user actions taken on
the phone.

Malicious midlet can block or change messages sent by a
given process in response to user actions. This can for
example result in an SMS sniffing application (SMS messages
sent by user are also sent to some other number).

It is highly probably that arbitrary phone calls can be also
established through IPC (communication with GSMCallServer).

FINAL REMARKS
FUTURE THREATS

 The fact that there are more users of mobile devices than
PC’s makes it very attractive target for attackers and worm
writers

 It should be expected that remote vulnerabilities for
mobile devices will be published within next 6 months

 Vendors and antivirus industry are not prepared for this kind
of threats (there are no means to protect users of the so
called „closed” mobile devices against malicious code)

 Open platforms (PalmOS, Symbian OS, Windows CE)
seem to be easier to protect, but they are also at the most
risk

FINAL REMARKS
ABOUT THIS WORK

 All of the KVM attack methods/malicious midlet examples
presented in this work have been verified in practice

 Detailed information about the addresses of some native
methods, system calls, global variables and Nokia OS/KVM
structures (fields, offsets) has been intentionally removed
from this presentation

 This also considers the way in which to interoperate with
native Nokia OS/KVM code

 Research paper with all the details including some
additional material that didn’t fit into this 90min talk will be
published in a couple of months

FINAL REMARKS
VALUABLE RESOURCES

 The JavaTM Virtual Machine Specification, Tim Lindholm,
Frank Yellin

 Connected Limited Device Configuration Specification ver.
1.0/1.1, SUN Microsystems

 CLDC Byte Code Typechecker Specification, Gilad Bracha,
Tim Lindholm, Wei Tao and Frank Yellin

 J2ME Building Blocks for Mobile Devices, White Paper on
KVM and the Connected, Limited Device Configuration
(CLDC), SUN Microsystems

 KVM Porting Guide, SUN Microsystems

THANK YOU FOR YOUR ATTENTION!

In case of any questions or comments, feel free to contact
me at the following address:

adam.gowdiak@man.poznan.pl

