
1

gnunet

presentation for DC10

by

— not disclosed due to DMCA —

2

gnunet Requirements

• Anonymity

• Confidentiality

• Deniability

• Accountability

• Efficiency

3

Applications

• anonymous sharing of medical histories

• distributed backups of important data

• ad-hoc communication between small devices

• and others

4

Infrastructure

We call gnunet a network because:

• file-sharing is just one possible application

• most components can be re-used for other applications:

? authentication

? discovery

? encrypted channels

? accounting

• the protocol is extensible and extentions are planned

5

Related Work

Network Gnutella[1, 4] Chord[24] Freenet[9] MojoNation[17]

Search bf-search compute df-search broker

Anonymous no no yes no

Accounting no no no yes

File-Sharing direct migrated insert insert

Chord[24], Publius[15], Tangler[16], CAN[19] and Pastry[21, 7] are equivalent from the point of view of this discussion.

6

Outline of the Talk

1. Encoding data for gnunet

2. Searching in gnunet

3. Anonymity in gnunet

4. Accounting in gnunet

7

Encoding in gnunet

• Requirements

• Trees

• Blocks

• Limitations

• Benefits

8

Problems with existing Systems

• Content submitted in plaintext, or

• content must be inserted into the network and is then

stored twice, in plaintext by the originator and encrypted

by the network (e.g. Freenet[9]);

• in some systems, independent insertions of the same

file results in different copies in the network (e.g.

Publius[15])

9

Encoding data for gnunet: Requirements

• intermediaries can not find out content or queries

• hosts can send replies to queries and deny knowing what

the query or the content was for

• keep storage requirements (and bandwidth) small

10

Tree Encoding

Files in gnunet are split into 1k blocks for the

transport[6]:

IBlock: indirection node
 containing hashes of
 child node data

H(H(Keyword))

Filenames
RBlock: Contains file information,
 description, and hashcode
 root indirection node.

IBlock (Root): Like other indirection
 blocks, this contains the
 hashes of its child nodes.

DBlock

H(H(Root IBlock))

H(H(IBlock))

H(H(DBlock))

Encoding of the entire file

11

Block Encoding
The hash of 51 blocks and a CRC are combined to an

IBlock:

f1 f f 50...2

H(f), ..., H(f)501
hashcodes, + 4−byte CRC

Space for 51 20−byte

(= 1024 bytes)

IBlock

...

1024 bytes

C
R

C

DBlocks

Encoding of the entire file

12

“Algorithm”

• split content into 1k blocks B (UDP packet size!)

• compute H(B) and H(H(B))

• encrypt B with H(B), with Blowfish

• store EH(B)(B) under H(H(B))

• build inner blocks containing H(B)

• root-node R contains description, file-size and a hash

13

Limitations

• If the keywords can be guessed... participating hosts

can decrypt the query.

• If the exact data can be guessed... participating hosts

can match the content.

• This is intended to reduce storage costs!

14

Benefits

• encryption of blocks independent of each other

• inherent integrity checks

• multiple (independent) insertions result in identical

blocks

• very fast, minimal memory consumption

• little chance of fragmentation on the network

• small blocksize enables us to make traffic uniform and

thus traffic analysis hard

15

Searching in gnunet

• Requirements

• Boolean queries

• Searching: Triple-Hash

• Routing

• Anonymity preview

16

Problems with existing Systems

• Centralized, or

• easy to attack by malicious participants.

• Queries in plaintext, or

• hard to use keys.

• Not anonymous, or

• malicious participants can send back garbage without

begin detected.

17

Requirements
• retrieve content with simple, natural-language keyword

• guard against traffic analysis

• guard against malicious hosts

• do not expose actual query

• do not expose key to the content

• be unpredictable

• support arbitrary content locations

• be efficient

18

Ease of Use

gnunet must be easy to use:

• search for “mp3” AND “Metallica” AND “DMCA”

• gnunet returns list of files with description

• user selects interesting file

• gnunet returns the file

19

Encrypting the root-node R
For each file, the user specifies a list of keywords to

gnunet-insert. Then:

• For each keyword K:

• gnunet saves EH(K)(R) under H(H(K)).

If the user searchs for “foo” and “bar”:

• Search for “foo”, search for “bar”.

• Find which root-nodes that are returned are for the

same file (= top-level hash). Display those.

20

Searching: Intuition

• Key for block B is H(B).

• Filename for block B is H(H(B)).

• Intuition: ask for H(H(B)), return EH(B)(B).

• Problem: malicious host sends back garbage, interme-

diaries can not detect

21

Triple-Hash

• Send query: H(H(H(B))).

• Reply is {H(H(B)), EH(B)(B)}.

• Malicious host must at least have H(H(B)) and thus

probably the content.

• It is impossible to do better together with anonymity

and confidentiality of query and content for sender and

receiver.

22

Routing

• keep a table of hosts that we are connected with

• forward query to n randomly chosen hosts

• select n based on load and importance of the query

• keep track of queries forwarded, use time-to-live to

detect loops

• bias the random choice of the hosts slightly towards a

Chord-like metric.

• take metric into account when migrating content

23

gnunet: Traffic Analysis Nightmare

• Group several queries to one larger packet.

• Introduce delays when forwarding.

• Packets can contain a mixture of queries, content, node-

discovery, garbage, etc.

• Make all packets look uniform (in size).

• Encrypt all traffic. Add noise if idle.

24

Open issues

• Approximate queries.

25

Anonymity in gnunet

• Techniques to achieve anonymity

• Attacks

• Efficiency

• A new perspective

• gnunet is malicious

26

Building Blocks

• indirections[25]

• random delays[10]

• noise[11, 22]

• confidential communication[18]

A

B C

27

Attacks on Anonymity

• traffic analysis[3]

• timing analysis

• malicious participants

• statistical analysis[20, 23]

28

Efficiency

If nodes indirect queries and replies, this has serious

efficiency implications:

For n indirections, the overhead in bandwidth (and

encryption time) is n-times the size of the content.

29

Money Laundering

Let’s illustrate gnunet’s perspective[5] with the example

of money laundering. If you wanted to hide your financial

traces, would you:

• Give the money to your neighbor,

• expect that your neighbor gives it to me,

• and then hope that I give it to the intended recipient?

Worse: trust everybody involved, not only that we do not

steal the money but also do not tell the FBI?

30

Banks!

In reality, banks are in the best position to launder

money:

• Take 1.000.000 transactions from customers,

• add your own little transaction,

• and better not keep any records.

As long as not all external entities cooperate against the

bank, nobody can prove which transaction was ours.

31

Why indirect?

• Indirections do not protect the sender or receiver.

• Indirections can help the indirector to hide its own

traffic.

• If the indirector cheats (e.g. by keeping the sender

address when forwarding) it only exposes its own action

and does not change the anonymity of the original

participants.

32

Key Realization

Anonymity can be measured in terms of

• how much traffic from non-malicious hosts is indirected

compared to the self-generated traffic

• in a time-interval small enough such that timing analysis

can not disambiguate the sources.

33

gnunet: anonymity for free

From this realization, we can motivate gnunet’s

anonymity policy:

• indirect when idle,

• forward when busy,

• drop when very busy.

B

C

A

1

2

3 4

Rationale: if we are indirecting lots of traffic, we don’t

need more to hide ourselves and can be more efficient by

merely forwarding.

34

Accounting in gnunet

• Goals

• Requirements

• Human Relationships!

• Digital Cash?

• Transitivity

• Open issues

35

Common Problems

• No accounting: easy to mount DoS attack[12]

• Overpricing legitimate use[2]

• Centralization[8]

• Lack of acceptance for micropayments

• Patents

36

Goals

• Reward contributing nodes with better service.

• Detect attacks:

? detect flooding,

? detect abuse,

? detect excessive free-loading, but

? allow harmless amounts of free-loading

37

Requirements

• No central server (rules out [17, 8]).

• No trusted authority (problem of initial accumulation,

see [13]).

• Everybody else is malicious and violates the protocols.

• Everybody can make-up a new identity at any time.

• New nodes should be able to join the network.

38

Human Relationships

• We do not have to trust anybody to form an opinion.

• Opinions are formed on a one-on-one basis, and

• may not be perceived equally by both parties.

• We do not charge for every little favour.

• We are grateful for every favour.

• There is no guarantee in life, in particular Alice does

not have to be kind to Bob because he was kind to her.

39

Excess-based Economy
gnunet’s economy[14] is based on the following

principals:

• if you are idle, doing a favour for free does not cost

anything;

• if somebody does you a favour, remember it;

• if you are busy, work for whoever you like most, but

remember that you paid the favour back;

• have a neutral attitude towards new entities;

• never dislike anybody (they could create a new identity

anytime).

40

Transitivity

If a node acts on behalf on another, it must ensure that

the sum of the charges it may suffer from other nodes is

lower than the amount it charged the sender:

A B

C

D

10
3

3

Transitivity in the gnunet economy.

41

Open Issues

• if a node is idle, it will not charge the sender;

• if a node delegates (indirects), it will use a lower priority

than the amount it charged itself;

• if an idle node delegates, it will always give priority 0.

• A receiver can not benefit from answering a query with

priority 0.

• If the priority is 0, content will not be marked as

valuable.

42

Conclusion

• gnunet is a cool system for privacy.

• gnunet can already be used.

• gnunet could get much better.

43

gnunet Online

http://www.ovmj.org/GNUnet/

44

gnunet resources

• FAQ

• Mailinglists

• Mantis

• README

• Sources

• WWW page

45

References

[1] E. Adar and B. Huberman. Free riding on gnutella. Technical

report, Xerox Parc, Aug. 2000.

[2] Adam Back. Hash cash - a denial of service counter-measure,

1997.

[3] Adam Back, Ulf Moeller, and Anton Stiglic. Traffic analysis

attacks and trade-offs in anonymity providing systems.

[4] S. Bellovin. Security aspects of napster and gnutella, 2000.

[5] K. Bennett and C. Grothoff. gap - practical anonymous network-

ing. 2002.

46

[6] K. Bennett, C. Grothoff, T. Horozov, and I. Patrascu. Efficient

sharing of encrypted data. In Proceedings of ASCIP 2002, 2002.

[7] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Exploiting

network proximity in peer-to-peer overlay networks.

[8] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash.

In Crypto ’88, pages 319–327, 1988.

[9] I. Clarke. A distributed decentralised information storage and

retrieval system, 1999.

[10] G. Danezis, R. Dingledine, D. Hopwood, and N. Mathewson.

Mixminion: Design of a type iii anonymous remailer, 2002.

[11] Wei Dei. Pipenet.

47

[12] Roger Dingledine, Michael J. Freedman, and David Molnar.

Accountability. 2001.

[13] Friedrich Engels. Umrisse zu einer Kritik der Nationalökonomie.

1844.

[14] C. Grothoff. An excess based economy. 2002.

[15] Aviel D. Rubin Marc Waldman and Lorrie Faith Cranor. Publius:

A robust, tamper-evident, censorship-resistant, web publishing

system. In Proc. 9th USENIX Security Symposium, pages 59–72,

August 2000.

[16] David Mazieres Marc Waldman. Tangler: A censorhip-resistant

publishing system based on document entanglements. 2001.

48

[17] Mojo Nation. Technology overview, Feb. 2000.

[18] George Orwell. 1984. 1949.

[19] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp,

and Scott Shenker. A scalable content addressable network.

Technical Report TR-00-010, Berkeley, CA, 2000.

[20] Michael K. Reiter and Aviel D. Rubin. Crowds: anonymity for

Web transactions. ACM Transactions on Information and System

Security, 1(1):66–92, 1998.

[21] Antony Rowstron and Peter Druschel. Pastry: Scalable, decen-

tralized object location and routing for large-scale peer-to-peer

systems.

49

[22] R. Sherwood and B. Bhattacharjee. P5: A protocol for scalable

anonymous communication. In IEEE Symposium on Security and

Privacy, 2002.

[23] Clay Shields and Brian Neil Levine. A protocol for anonymous

communication over the internet. In ACM Conference on Com-

puter and Communications Security, pages 33–42, 2000.

[24] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and

Hari Balakrishnan. Chord: A scalable Peer-To-Peer lookup

service for internet applications. pages 149–160.

[25] P F Syverson, D M Goldschlag, and M G Reed. Anonymous

connections and onion routing. In IEEE Symposium on Security

and Privacy, pages 44–54, Oakland, California, 4–7 1997.

