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gnunet Requirements

• Anonymity

• Confidentiality

• Deniability

• Accountability

• Efficiency
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Applications

• anonymous sharing of medical histories

• distributed backups of important data

• ad-hoc communication between small devices

• and others
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Infrastructure

We call gnunet a network because:

• file-sharing is just one possible application

• most components can be re-used for other applications:

? authentication

? discovery

? encrypted channels

? accounting

• the protocol is extensible and extentions are planned
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Related Work

Network Gnutella[1, 4] Chord[24] Freenet[9] MojoNation[17]

Search bf-search compute df-search broker

Anonymous no no yes no

Accounting no no no yes

File-Sharing direct migrated insert insert

Chord[24], Publius[15], Tangler[16], CAN[19] and Pastry[21, 7] are equivalent from the point of view of this discussion.
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Outline of the Talk

1. Encoding data for gnunet

2. Searching in gnunet

3. Anonymity in gnunet

4. Accounting in gnunet
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Encoding in gnunet

• Requirements

• Trees

• Blocks

• Limitations

• Benefits
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Problems with existing Systems

• Content submitted in plaintext, or

• content must be inserted into the network and is then

stored twice, in plaintext by the originator and encrypted

by the network (e.g. Freenet[9]);

• in some systems, independent insertions of the same

file results in different copies in the network (e.g.

Publius[15])
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Encoding data for gnunet: Requirements

• intermediaries can not find out content or queries

• hosts can send replies to queries and deny knowing what

the query or the content was for

• keep storage requirements (and bandwidth) small
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Tree Encoding

Files in gnunet are split into 1k blocks for the

transport[6]:

IBlock: indirection node
             containing hashes of
             child node data

H(H(Keyword))

Filenames
RBlock: Contains file information,
              description, and hashcode 
              root indirection node.

IBlock (Root): Like other indirection
            blocks, this contains the
            hashes of its child nodes.

DBlock

H(H(Root IBlock))

H(H(IBlock))

H(H(DBlock))

Encoding of the entire file
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Block Encoding
The hash of 51 blocks and a CRC are combined to an

IBlock:

f1 f f 50...2

H(f  ), ..., H(f    )501
hashcodes, + 4−byte CRC

Space for 51  20−byte

(= 1024 bytes)

IBlock

...

1024 bytes

C
R

C

DBlocks

Encoding of the entire file
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“Algorithm”

• split content into 1k blocks B (UDP packet size!)

• compute H(B) and H(H(B))

• encrypt B with H(B), with Blowfish

• store EH(B)(B) under H(H(B))

• build inner blocks containing H(B)

• root-node R contains description, file-size and a hash
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Limitations

• If the keywords can be guessed... participating hosts

can decrypt the query.

• If the exact data can be guessed... participating hosts

can match the content.

• This is intended to reduce storage costs!
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Benefits

• encryption of blocks independent of each other

• inherent integrity checks

• multiple (independent) insertions result in identical

blocks

• very fast, minimal memory consumption

• little chance of fragmentation on the network

• small blocksize enables us to make traffic uniform and

thus traffic analysis hard
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Searching in gnunet

• Requirements

• Boolean queries

• Searching: Triple-Hash

• Routing

• Anonymity preview
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Problems with existing Systems

• Centralized, or

• easy to attack by malicious participants.

• Queries in plaintext, or

• hard to use keys.

• Not anonymous, or

• malicious participants can send back garbage without

begin detected.
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Requirements
• retrieve content with simple, natural-language keyword

• guard against traffic analysis

• guard against malicious hosts

• do not expose actual query

• do not expose key to the content

• be unpredictable

• support arbitrary content locations

• be efficient
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Ease of Use

gnunet must be easy to use:

• search for “mp3” AND “Metallica” AND “DMCA”

• gnunet returns list of files with description

• user selects interesting file

• gnunet returns the file
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Encrypting the root-node R
For each file, the user specifies a list of keywords to

gnunet-insert. Then:

• For each keyword K:

• gnunet saves EH(K)(R) under H(H(K)).

If the user searchs for “foo” and “bar”:

• Search for “foo”, search for “bar”.

• Find which root-nodes that are returned are for the

same file (= top-level hash). Display those.
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Searching: Intuition

• Key for block B is H(B).

• Filename for block B is H(H(B)).

• Intuition: ask for H(H(B)), return EH(B)(B).

• Problem: malicious host sends back garbage, interme-

diaries can not detect
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Triple-Hash

• Send query: H(H(H(B))).

• Reply is {H(H(B)), EH(B)(B)}.

• Malicious host must at least have H(H(B)) and thus

probably the content.

• It is impossible to do better together with anonymity

and confidentiality of query and content for sender and

receiver.
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Routing

• keep a table of hosts that we are connected with

• forward query to n randomly chosen hosts

• select n based on load and importance of the query

• keep track of queries forwarded, use time-to-live to

detect loops

• bias the random choice of the hosts slightly towards a

Chord-like metric.

• take metric into account when migrating content
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gnunet: Traffic Analysis Nightmare

• Group several queries to one larger packet.

• Introduce delays when forwarding.

• Packets can contain a mixture of queries, content, node-

discovery, garbage, etc.

• Make all packets look uniform (in size).

• Encrypt all traffic. Add noise if idle.
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Open issues

• Approximate queries.
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Anonymity in gnunet

• Techniques to achieve anonymity

• Attacks

• Efficiency

• A new perspective

• gnunet is malicious
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Building Blocks

• indirections[25]

• random delays[10]

• noise[11, 22]

• confidential communication[18]

A

B C
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Attacks on Anonymity

• traffic analysis[3]

• timing analysis

• malicious participants

• statistical analysis[20, 23]
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Efficiency

If nodes indirect queries and replies, this has serious

efficiency implications:

For n indirections, the overhead in bandwidth (and

encryption time) is n-times the size of the content.
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Money Laundering

Let’s illustrate gnunet’s perspective[5] with the example

of money laundering. If you wanted to hide your financial

traces, would you:

• Give the money to your neighbor,

• expect that your neighbor gives it to me,

• and then hope that I give it to the intended recipient?

Worse: trust everybody involved, not only that we do not

steal the money but also do not tell the FBI?
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Banks!

In reality, banks are in the best position to launder

money:

• Take 1.000.000 transactions from customers,

• add your own little transaction,

• and better not keep any records.

As long as not all external entities cooperate against the

bank, nobody can prove which transaction was ours.



31

Why indirect?

• Indirections do not protect the sender or receiver.

• Indirections can help the indirector to hide its own

traffic.

• If the indirector cheats (e.g. by keeping the sender

address when forwarding) it only exposes its own action

and does not change the anonymity of the original

participants.
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Key Realization

Anonymity can be measured in terms of

• how much traffic from non-malicious hosts is indirected

compared to the self-generated traffic

• in a time-interval small enough such that timing analysis

can not disambiguate the sources.
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gnunet: anonymity for free

From this realization, we can motivate gnunet’s

anonymity policy:

• indirect when idle,

• forward when busy,

• drop when very busy.

B

C

A

1

2

3 4

Rationale: if we are indirecting lots of traffic, we don’t

need more to hide ourselves and can be more efficient by

merely forwarding.
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Accounting in gnunet

• Goals

• Requirements

• Human Relationships!

• Digital Cash?

• Transitivity

• Open issues
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Common Problems

• No accounting: easy to mount DoS attack[12]

• Overpricing legitimate use[2]

• Centralization[8]

• Lack of acceptance for micropayments

• Patents
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Goals

• Reward contributing nodes with better service.

• Detect attacks:

? detect flooding,

? detect abuse,

? detect excessive free-loading, but

? allow harmless amounts of free-loading
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Requirements

• No central server (rules out [17, 8]).

• No trusted authority (problem of initial accumulation,

see [13]).

• Everybody else is malicious and violates the protocols.

• Everybody can make-up a new identity at any time.

• New nodes should be able to join the network.
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Human Relationships

• We do not have to trust anybody to form an opinion.

• Opinions are formed on a one-on-one basis, and

• may not be perceived equally by both parties.

• We do not charge for every little favour.

• We are grateful for every favour.

• There is no guarantee in life, in particular Alice does

not have to be kind to Bob because he was kind to her.
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Excess-based Economy
gnunet’s economy[14] is based on the following

principals:

• if you are idle, doing a favour for free does not cost

anything;

• if somebody does you a favour, remember it;

• if you are busy, work for whoever you like most, but

remember that you paid the favour back;

• have a neutral attitude towards new entities;

• never dislike anybody (they could create a new identity

anytime).
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Transitivity

If a node acts on behalf on another, it must ensure that

the sum of the charges it may suffer from other nodes is

lower than the amount it charged the sender:

A B

C

D

10
3

3

Transitivity in the gnunet economy.
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Open Issues

• if a node is idle, it will not charge the sender;

• if a node delegates (indirects), it will use a lower priority

than the amount it charged itself;

• if an idle node delegates, it will always give priority 0.

• A receiver can not benefit from answering a query with

priority 0.

• If the priority is 0, content will not be marked as

valuable.
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Conclusion

• gnunet is a cool system for privacy.

• gnunet can already be used.

• gnunet could get much better.



43

gnunet Online

http://www.ovmj.org/GNUnet/



44

gnunet resources

• FAQ

• Mailinglists

• Mantis

• README

• Sources

• WWW page
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