
CDPWN – © 2020 ARMIS, INC.

Breaking the Discovery
Protocols of the
Enterprise of Things

Barak Hadad
Ben Seri
Yuval Sarel

Introduction 3

Who we are 4

Researching the sub-layers of the network 5

What makes a network tick? 5

Layer 2 attack surface in network appliances 6

Discovery protocols 8

Unravelling 1-days in discovery protocols 8

Finding CVE-2018-0167 (LLDP) 8

Patch-diffing the LLDP daemon versions 9

Finding CVE-2018-0303 (NX-OS and FXOS RCE in CDP) 12

Newly discovered vulnerabilities in CDP 15

CDP vulnerabilities in switches and routers 15

NX-OS Resource Exhaustion in the Addresses TLV (CVE-2020-3120) 15

IOS-XR variant of CVE-2020-3120 17

Exploitability 18

Impact 18

NX-OS Stack Overflow in the Power Request TLV (CVE-2020-3119) 18

Exploitability 20

Impact 21

IOS XR Format String vulnerability in multiple TLVs (CVE-2020-3118) 21

Exploitability 22

Impact 22

CDPwn all the things - CDP vulnerabilities in IP Phones & Cameras 23

IP Phones Stack Overflow in PortID TLV (CVE-2020-3111) 23

Exploitability 24

Impact 24

IP Cameras Heap Overflow in DeviceID TLV (CVE-2020-3110) 25

Exploitability 26

Impact 26

Conclusion 29

CDPwn – ©2020 ARMIS, INC. – 2 TECHNICAL WHITE PAPER

Introduction

Armis labs discovered 5 zero day vulnerabilities affecting a wide array of Cisco products, including Cisco
routers, switches, IP Phones and IP cameras. Four of the vulnerabilities enable Remote Code Execution
(RCE). The latter is a Denial of Service (DoS) vulnerability that can halt the operation of entire networks.

As a group, CDPwn affects a wide variety of devices with at least one RCE vulnerability affecting each
device type. By exploiting CDPwn, an attacker can take over organizations’ network (switches and
routers), it’s telecommunication (IP Phones) and even compromise it’s physical security (IP Cameras).

Dubbed CDPwn the vulnerabilities reside in the processing of CDP (Cisco Discovery Protocol) packets,
impacting firmware versions released in the last 10 years and are an example of the fragility of a
network’s security posture when confronted with vulnerabilities in proprietary Layer 2 protocols.

The 5 vulnerabilities found are comprised of 4 remote code execution vulnerabilities:

1. Cisco NX-OS Stack Overflow in the Power Request TLV (CVE-2020-3119)

2. Cisco IOS XR Format String vulnerability in multiple TLVs (CVE-2020-3118)

3. Cisco IP Phones Stack Overflow in PortID TLV (CVE-2020-3111)

4. Cisco IP Cameras Heap Overflow in DeviceID TLV (CVE-2020-3110)

And 1 Denial of Service vulnerability:

5. Cisco FXOS, IOS XR and NX-OS Resource Exhaustion in the Addresses TLV (CVE-2020-3120)

This document will detail the attack surface exposed by proprietary Layer 2 protocols as well as the
discovered vulnerabilities in the CDP protocol. It will also detail the severe impact these vulnerabilities
have if exploited on affected devices.

CDPwn – ©2020 ARMIS, INC. – 3 TECHNICAL WHITE PAPER

Who we are

Armis Labs is Armis’ research team, focused on mixing and splitting the atoms that comprise the IoT
devices that surround us - be it a smart personal assistant, a benign looking printer, a SCADA controller
or a life-supporting device such as a hospital bedside patient monitor.

Our previous research includes:

● URGENT/11 - 11 Zero Day vulnerabilities impacting VxWorks, the most widely used Real Time
Operating System (RTOS). The technical whitepaper for this research can be found here:

○ URGENT/11 - Critical vulnerabilities to remotely compromise VxWorks

● BLEEDINGBIT - Two chip-level vulnerabilities in Texas Instruments BLE chips, embedded in
Enterprise-grade Access Points. The technical whitepaper for this research can be found here:

○ BLEEDINGBIT - The hidden attack surface within BLE chips

● BlueBorne - An attack vector targeting devices via RCE vulnerabilities in Bluetooth stacks used by
over 5.3 Billion devices. This research was comprised of 3 technical whitepapers:

○ BlueBorne - The dangers of Bluetooth implementations: Unveiling zero day
vulnerabilities and security flaws in modern Bluetooth stacks

○ BlueBorne on Android - Exploiting an RCE Over the Air

○ Exploiting BlueBorne in Linux-Based IoT deices

CDPwn – ©2020 ARMIS, INC. – 4 TECHNICAL WHITE PAPER

https://www.armis.com/urgent11/
https://go.armis.com/hubfs/White-papers/Urgent11%20Technical%20White%20Paper.pdf
https://armis.com/bleedingbit
https://go.armis.com/bleedingbit
https://armis.com/blueborne
http://go.armis.com/blueborne-technical-paper
http://go.armis.com/blueborne-technical-paper
http://go.armis.com/android-security-vulnerability
http://go.armis.com/blueborne-linux-technical-paper-success

Researching the sub-layers of the network

A network of any organization is comprised first by the endpoints that connect to it, but it also contains

the devices that operate as the backbone of the network, the pipelines through which traffic is traversed

- network appliances such as switches and routers. More often than not, these devices are not taken

into consideration when examining the security posture of an organization even though they implement

the isolation to sub-networks (a.k.a network segments - VLANs), that is the first line of defense against

an attacker that is attempting to perform lateral movement, and move not only between endpoints, but

also between segmented parts of the network.

In this research we wish to shed light over the protocols and devices that operate the mechanics of the

network, and the vulnerabilities that can arise in their implementations.

What makes a network tick?

A managed network should contain multiple VLANs, split by their level of trust. For example, segregating
corporate devices from the Guest WiFi network or from the network containing IoT devices.

The VLANs are handled by an embedded device, without inherent security to it - an enterprise network
switch. By taking control of a switch an attacker can traverse between VLANs, breaking the trust zones
and gaining access to valuable data, or move laterally to attack additional endpoints. By abusing a
relatively vulnerable IoT device located on designated VLAN an attacker could take control of the nearby
switch and jump to a mission critical VLAN of the organization.

CDPwn – ©2020 ARMIS, INC. – 5 TECHNICAL WHITE PAPER

Layer 2 attack surface in network appliances

To accommodate both performance and security needs, network appliances have become increasingly
complex implementing dozens of Layer 2 protocols to meet these requirements. These protocols allow
many features that were not possible in the past, when networks were powered by simple switches or
hubs. The features include network flexibility, “smart” or automatic configuration of ports and efficient
network utilization.

Some of the common protocols that implement these include STP, RSTP and LLDP. Many of the more
advanced features of these protocols were created by Cisco - a market leader in the field of network
infrastructure. Thus, the protocols are proprietary and not necessarily publicly documented and are
supported only by Cisco products. These include CDP, ISL and PVST.

Although these features allow better management and network utilization, they also represent an
untapped attack surface that may contain vulnerabilities that allow attackers to take over network
appliances and bypass network segmentation.

Partial table of Layer 2 protocols used by network appliances, keyed by destination MAC address

CDPwn – ©2020 ARMIS, INC. – 6 TECHNICAL WHITE PAPER

While examining a Cisco Nexus switch, for example, we found that many of these Layer 2 protocols are
eventually handled by software. Nexus switches are based on the NX-OS operating system which is
based on Wind River Linux.

The first step is to find which protocols are routed to the main CPU (the same CPU that parses user input
and controls the switch configuration). After a bit of digging we found this data flow:

● Layer 2 forwarder (l2fwder) - The first process to parse incoming layer 2 packets, based on some
hardware filtering of specific destination MAC addresses. It removes basic packet encapsulation
and decides if the packet should be dropped or sent for more specific processing.

● mts_queue - A message queue used to send the packets between the processes.
● Protocol parser - Each protocol has its own protocol parser process. For example, the parser for

CDP is cdpd.
● l2fwder supports a multitude of protocols:

○ BPDU (Bridge Protocol Data Units)
■ STP (Spanning Tree Protocol) - A network protocol that builds a loop free logical

topology for Ethernet networks.
● RSTP (Rapid Spanning Tree Protocol) - Faster STP
● MSTP (Multiple Spanning Tree Protocol) - STP with VLANs support

○ LACP (Link Aggregation Control Protocol) - Allows port trunking
○ PVST+ (Per VLAN Spanning Tree)

■ RPVST+ (Rapid Per VLAN Spanning Tree)
○ CDP - Cisco Discovery Protocol
○ LLDP - Link Layer Discovery Protocol

CDPwn – ©2020 ARMIS, INC. – 7 TECHNICAL WHITE PAPER

○ DTP - Dynamic Trunking Protocol
○ VTP - VLAN Trunking Protocol

Layer 2 packets of the above protocols are captured on all interfaces of the switch, and not just on a
switches management port, and in turn these packets are also parsed by the l2fwder process, and the
specific protocols parsers as well. By obtaining a vulnerability that can lead to RCE, in any one of the
parsing processes of these protocols can allow an attacker to take over a switch, regardless of the VLAN
he is in.

Discovery protocols

For a network administrator, it’s important to understand what devices are connected to a specific LAN.
For this purpose, discovery protocols were invented. They work using periodic advertising packets sent
by the connected devices and stored on the switch.

Two discovery protocols are commonly used:

● LLDP - Link layer discovery protocol. Widely used by network printers and other non-Cisco
devices.

● CDP - Cisco discovery protocol - Cisco’s version of LLDP, enabled by default for almost all Cisco
products, including Cisco network appliances, Cisco VoIP Phones, Cisco IP Cameras, etc. Some
Cisco features, such as VoIP dedicated VLAN settings rely on CDP and thus it can’t be turned off
in these devices.

Both protocols are Layer 2 discovery protocols, used by a variety of embedded devices. For large
organizations, we can expect both protocols to be enabled. Both of these protocols are based on very
flexible structures that enable passing of varying-length fields in multiple formats (TLVs). The various
fields and structures in these protocols represent a wide attack surface that might contain
vulnerabilities.

Unravelling 1-days in discovery protocols

To better understand this attack surface we searched for any related CVEs disclosed in these discovery
protocols, and found a few potential RCEs (remote code execution) in the implementation of CDP and
LLDP affecting multiple Cisco products (IOS, IOS XE, IOS XR and NX-OS) that were disclosed in Cisco
security advisories. These vulnerabilities were found internally by Cisco, and so these advisories
contained almost no description about what exactly was patched. Reverse engineering the patched
versions, and comparing them to earlier versions led us to uncover the 1-day bugs that were fixed.

Finding CVE-2018-0167 (LLDP)

The first advisory we’ve examined describes "Two vulnerabilities in the LLDP subsystem of Cisco IOS
Software, Cisco IOS XE Software, and Cisco IOS XR Software could allow an unauthenticated, adjacent
attacker to cause a DoS condition or execute arbitrary code with elevated privileges.", the attached
bug-report added only a bit more detail:

CDPwn – ©2020 ARMIS, INC. – 8 TECHNICAL WHITE PAPER

https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20180328-lldp

The vulnerability exists due to improper error handling of malformed LLDP messages. An attacker that
is directly connected to an interface of the affected device could exploit this vulnerability by submitting
an LLDP protocol data unit (PDU) that is designed to trigger the issue. If successful, an exploitable
buffer overflow condition may occur that could result in a DoS condition or the attacker gaining the
ability to execute arbitrary code with elevated privileges.

This description is obviously too generic to pinpoint the actual vulnerabilities that were patched. So in
search for the bug, we decided to look for the code changes in the various implementation of LLDP in
the affected OSes, starting with IOS-XR - A variant of Cisco’s widely used IOS operating system used in
carrier-grade routers such as the CRS series, 12000 series and ASR 9000 series.

We downloaded the version before the CVE fix (IOS-XRv-5.1.2) and the version right after (IOS-XRv-5.1.3)
and compared the two.

Patch-diffing the LLDP daemon versions

We used Diaphora ("diffing plugin for IDA") to compare the two LLDP daemon versions, before and after
the fix and found quite a few functions that have changed.

CDPwn – ©2020 ARMIS, INC. – 9 TECHNICAL WHITE PAPER

https://github.com/joxeankoret/diaphora

Screenshot of the Diaphora IDA plugin output, comparing two adjacent versions of the LLDP daemon in IOS XR

Most of the changes aboves had nothing to do with the vulnerabilities patched and we needed to find
the changes related to the patched vulnerability.

The main TLV parsing function is lldp_process_tlv (the added code is marked in green):

signed int lldp_process_tlv(int64 a1, pkt_data_t *a_pkt_data, output_t *output,
 char a4, char *a5, uint64 *a_bytes_read,
 uint64 a_bytes_left_in_pkt) {
 ...
 switch (tlv_type)
 {
 ...
 case SYSTEM_CAPABILITIES:
 if (tlv_length > 255)
 break;
+ if (tlv_length < 4)
+ break;
 memcpy(&output->capabilities, &a_pkt_data->tlv_value, 4u);
 ..
 case MANAGEMENT_ADDRESS:
+ if (tlv_length < 9)
+ break;
+ if (output->management_addr_list_len >= 10)
+ break;
 ma_current_node = output->management_addr_list_head;

CDPwn – ©2020 ARMIS, INC. – 10 TECHNICAL WHITE PAPER

 if (output->management_addr_list_len > 0)
 {
 for(index = 0;index < output->management_addr_list_len; index++)
 ma_current_node = (struct_ma_current_node *)ma_current_node->next;
 }
 memcpy(&ma_current_node->addr_str_length, &a_pkt_data->tlv_value, 1u);
 addr_str_length = ma_current_node->addr_str_length;
 bytes_left = tlv_length - 1;
+ if (addr_str_length <= 1)
+ break;
 if (addr_str_length > 32)
 break;
+ if (bytes_left < addr_str_length)
+ break;
 memcpy(&ma_current_node->addr_subtype, &a_pkt_data->addr_subtype, 1u);
 memcpy(ma_current_node->management_addr, &a_pkt_data->management_addr,
 addr_str_length - 1);
 interface_subtype = &a_pkt_data->addr_subtype + addr_str_length;
 bytes_left = (unsigned __int16)(bytes_left - addr_str_length);
+ if (bytes_left < 5)
+ break;
 memcpy(&ma_current_node->interface_subtype, interface_subtype, 1u);
 memcpy(&ma_current_node->interface_number, interface_subtype + 1, 4u);
 ..
 break;
 case CUSTOM_TLV:
+ if (tlv_length < 4)
+ return 0;
 memcpy(output->unknown_tlv_val, &a_pkt_data->tlv_value, 4u);
 ...
 }

Simplified decompiled code of the function lldp_process_tlv, with the added code marked in green.

From the above code changes, it is apparent that this new version had resolved multiple cases of missing
boundary checks that resulted in various flaws:

● Out-of-bound reads of the input packet buffer, that would result in an information leak from the
heap stored to the CDP neighbors table.

For example:

case CUSTOM_TLV:
 // DIFF: New check - buffer overread if tlv_length = 0
 // a_pkt_data->tlv_value might contain out-of-bounds heap data.
+ if (tlv_length < 4)
+ return 0;
 memcpy(output->unknown_tlv_val, &a_pkt_data->tlv_value, 4u);

● Integer underflows that would result in a memcpy of size MAX_UINT (a.k.a “wild-copy”), that
would create uncontrolled heap overflows that would ultimately crash the CDP daemon.

CDPwn – ©2020 ARMIS, INC. – 11 TECHNICAL WHITE PAPER

For example:

case MANAGEMENT_ADDRESS:
 ...
 // DIFF: new check - crash due to huge memcpy
+ if (addr_str_length <= 1)
+ break;
 ...
 memcpy(ma_current_node->management_addr, &a_pkt_data->management_addr,
 addr_str_length - 1);

● NULL dereference, due to lack of size validation of certain linked-lists. In most cases this would
also be an unexploitable flaw, and will lead to a crash of the CDP daemon.

For example:

case MANAGEMENT_ADDRESS:
 ...
 management_addr_list_len = output->management_addr_list_len;
 // DIFF: new check - Crash caused by writing to NULL (end of list)
+ if (management_addr_list_len >= 10)
+ break;
 // List size is hard coded to 10!
 ma_current_node = output->management_addr_list_head;
 if (management_addr_list_len > 0)
 {
 for (index = 0;index < management_addr_list_len; index++)
 ma_current_node = (struct_ma_current_node *)ma_current_node->next;
 }
 memcpy(&ma_current_node->addr_str_length, &a_pkt_data->tlv_value, 1u);

These vulnerabilities could be easily used for DoS attacks. However, no exploitable RCE vulnerability was
found in these code changes, and we decided to move on to the 1-days disclosed in the CDP protocol.

Finding CVE-2018-0303 (NX-OS and FXOS RCE in CDP)

From all the security advisories published by Cisco regarding vulnerabilities in layer-2 discovery
protocols, only one clearly indicated that an RCE vulnerability was patched. This advisory focused on the
NX-OS and FXOS operating systems, and detailed a buffer-overflow vulnerability in parsing of CDP (Cisco
Discovery Protocol) packets:

A vulnerability in the Cisco Discovery Protocol component of Cisco FXOS Software and Cisco NX-OS
Software could allow an unauthenticated, adjacent attacker to execute arbitrary code as root or cause
a denial of service (DoS) condition on the affected device. The vulnerability exists because of
insufficiently validated Cisco Discovery Protocol packet headers. An attacker could exploit this
vulnerability by sending a crafted Cisco Discovery Protocol packet to a Layer 2 adjacent affected
device. A successful exploit could allow the attacker to cause a buffer overflow that could allow the
attacker to execute arbitrary code as root or cause a DoS condition on the affected device.

This time, it seemed an exploitable RCE vulnerability might be within reach.

CDPwn – ©2020 ARMIS, INC. – 12 TECHNICAL WHITE PAPER

https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20180620-fxnxos-dos

Similarly to the 1-day vulnerability research done in LLDP, we examined the code before and after the
patched version and found a heap overflow in cdpd_handle_addr_tlv:

void *cdpd_handle_addr_tlv(device_record_t *dev_record, uint16 packet_len,
 addresses *in_packet)
{
 ...
 number_of_addr = in_packet->num_of_addr;
 // same dev_record is used for all CDP packets from the same device
 if (32 * number_of_addr > dev_record->addr_blob_used_bytes)
 {
 dev_record->addr_blob = cdpd_malloc(8, 32 * number_of_addr);
 dev_record->addr_blob_used_bytes = 32 * number_of_addr;
 ...
 }
 addr_blob = (struct_addr_blob *)dev_record->addr_blob;
 ...
 for (in_addr in in_packet->addresses)
 {
 ...
 addr_len = in_addr->addr_len;
 if ((in_packet->protocol_type == IPV4) && (addr_len == 4))
 {
 // protocol_type is not initialized on new packets
 addr_blob->protocol_type = IPV4;
 }
 else if ((in_packet->protocol_type == IPV6) && (addr_len == 16))
 {
 addr_blob->protocol_type = IPV6;
 }
 if ((addr_blob->protocol_type == IPV4) || (addr_blob->protocol_type == IPV6))
 {
 memcpy(&addr_blob->addr, in_addr->addr, addr_len);
 }
 ...
 }

Simplified decompiled code of the function cdpd_handle_addr_tlv, disassembled from NX-OS v7.3.0.1

The variable addr_blob holds the parsed address field values sent from a certain CDP neighbor. This
structure is allocated on the heap, each time the size of an incoming addresses TLV array is larger than
the buffer currently allocated for a certain CDP neighbor. If the incoming CDP packet contains an
addresses TLV array of similar, or smaller size - the addr_blob allocated previously is reused.

In addition to this behaviour, this code lacks proper validation of the addr_len field. It will validate that
an IPV4 address is 4 bytes long, and that an IPV6 address is 16 bytes long, and will set the
addr_blog->protocol_type accordingly. However, since the entire addr_blog is reused between instances
of incoming CDP packets, the above validation might be insufficient.

CDPwn – ©2020 ARMIS, INC. – 13 TECHNICAL WHITE PAPER

 The main bug in this function is that addr_blob→protocol_type is used for flow control but it isn’t
reinitialized on new packets - causing a state confusion between calls to this function that can ultimately
allow an attacker to freely control the addr_len variable passed to memcpy at the end of the function
which will lead to heap-overflow with attacker controlled data.

Consider the following scenario:

1. A legitimate CDP packet is processed, containing one address with protocol_type = 1(IPv4)
a. dev_record is allocated for the specified MAC address
b. addr_blob is allocated for the dev_record and addr_blob→protocol_type = IPV4

2. A second CDP packet, is processed from the same CDP neighbor. This time, the packet is
malicious, containing one address with protocol_type = 0xA (Not IPV4 or IPV6) and
addr_len=0xffff

a. The same dev_record is used because it's the same MAC address
b. Since the number_of_addr didn't change (still 1), malloc is not called again and we get

the same addr_blob as for the previous packet with addr_blob→protocol_type = IPV4
already set.

c. Inside the for loop, addr_blob→protocol_type is 0xA so we don't enter the first two if
clauses and addr_blob→protocol_type still equals IPV4.

d. Since addr_blob→protocol_type was not set in this iteration, it equals IPV4 (from the
previous call to the function)

i. memcpy is called with size addr_len (attacker controlled) even though the target
buffer is of size 32 bytes. This will cause an out-of-bounds copy onto a heap
buffer.

Using some heap shaping this vulnerability could lead to remote-code-execution.

Continuing the research from the above flow, we discovered a zero-day DoS vulnerability
(CVE-2020-3120) in the processing of the same TLV presented above.

CDPwn – ©2020 ARMIS, INC. – 14 TECHNICAL WHITE PAPER

Newly discovered vulnerabilities in CDP

Having learned the common vulnerabilities in Cisco discovery protocols parsers, we set out to find
zero-day vulnerabilities that were not patched at the time.

CDP vulnerabilities in switches and routers

NX-OS Resource Exhaustion in the Addresses TLV (CVE-2020-3120)

Examining the structure of the Addresses TLV in depth, raises some concern on the difficulty of parsing it
bug-free:

There are 4 varying length fields in the same TLV:

● TLV Length - 2 bytes
○ Number of addresses - 4 Bytes (Why have a 4 byte length that is encapsulated by a

2-byte length? 😐)
■ Protocol length - 1 Byte
■ Address length - 2 Bytes

Some of these length fields are also redundant, when considering they represent the size of IP
addresses, while the type of the IP address is also part of the TLV structure (an IPv4 address will always
be 32-bit, for example).

CDPwn – ©2020 ARMIS, INC. – 15 TECHNICAL WHITE PAPER

One edge-case problem introduced by this structure, is the ability of an attacker to cause allocations of
huge memory blocks by setting Number of Addresses to any size he wishes, which can eventually lead to
a crash of the CDP daemon.

Let’s have another look on the cdpd_handle_addr_tlv function (in NX-OS v7.3.0.1):

void *cdpd_handle_addr_tlv(struct_device_record *dev_record,
 uint16 packet_len, addresses *in_packet)
{
 ...
 number_of_addr = in_packet->num_of_addr;
 if (32 * number_of_addr > dev_record->addr_blob_used_bytes)
 {
 cdpd_free(dev_record->addr_blob);
 // This buffer is allocated even if the packet doesn’t have enough addresses
 dev_record->addr_blob = cdpd_malloc(8, 32 * number_of_addr);
 dev_record->addr_blob_used_bytes = 32 * number_of_addr;
 }

Decompiled code snippet cdpd_handle_addr_tlv

Regardless of the fact the CDP packet is limited by size, the number_of_addr field isn’t boundary
checked by the above code, and an attacker can cause allocations of huge blocks of memory. The
dev_record->addr_blob variable is freed only after the CDP record timeout passes, and this timeout is
also sent in the CDP packet, allowing the attacker to control when the allocation is freed. This means
that an attacker can control exactly how much memory is going to be allocated, and for what period of
time, quickly exhausting the device memory.

CDPwn – ©2020 ARMIS, INC. – 16 TECHNICAL WHITE PAPER

In the latest release of NX-OS at the time of this research (v9.2.3), and additional validation of
number_of_addr was introduced:

void *cdpd_handle_addr_tlv(device_record_t *dev_record,
 uint16 packet_len, addresses *in_packet)
{
 ...
 number_of_addr = in_packet->num_of_addr;
 // Overflow check?
 if (number_of_addr > 32 * number_of_addr)
 {
 ...
 return &n + 1;
 }
 if (32 * number_of_addr > dev_record->addr_blob_used_bytes)
 {
 cdpd_free(dev_record->addr_blob);
 dev_record->addr_blob = cdpd_malloc(8, 32 * number_of_addr);
 ...

Decompiled code snippet cdpd_handle_addr_tlv

To prevent a possible flow, where the allocation size of number_of_addr * 32 overflows, which in turn
might lead to a small buffer allocated, while a large amount of addresses are parsed and copied to that
allocation buffer, the overflow check above was introduced. Unfortunately, the above condition can still
overflow and this validation can be subverted. Multiplying an integer by 32 is the same as shifting it left
by 5 bits, meaning that in order to pass this condition, an attacker just needs to set the most significant
5 bits to a smaller number than the next 5 bits.

To clarify this statement, consider the following 16-bit number:

0b0111110000000000 * 32 = 0b0111110000000000 << 5 = 0b1000000000000000
0b0111110000000000 < 0b1000000000000000

This multiplication can thus overflow, and remain larger than the original number. So despite this added
validate, an attacker can still allocate huge amounts of memory leading the device to crash.

IOS-XR variant of CVE-2020-3120

The same TLV parsing mechanism was examined in the latest version of IOS-XR (v6.5.2), and a different
bug with a similar effect was discovered.

CDPwn – ©2020 ARMIS, INC. – 17 TECHNICAL WHITE PAPER

The vulnerable function cdp_handle_address_info will also allocate an addr_blob with minimal boundary
check validations:

if (bytes_left_in_packet >= (unsigned int)(5 * number_of_addresses))
{
 ...
 device_entry->addr_blob = malloc(24 * number_of_addresses);
 ...

Decompiled code snippet from the function cdp_handle_address_info

In this implementation, number_of_addresses * 5 is validated to be smaller than the number of bytes
left in the packet. However, the allocations size following this validation is of number_of_addresses * 24.
A 32-bit number that will be overflowed to a very small number when multiplied by 5, can
simultaneously be overflowed to a large number when multiplied by 24 that will also lead to a large
allocation.

Any product of will pass the first check so we will use = 0xcccccccd5
MaxUInt

5
4 × MaxUInt

0xcccccccd * 24 = 0x33333338 = ~820 MB

Exploitability

An attacker could exploit the variants of this vulnerability as described above by sending multiple CDP
packets and precisely control the amount of memory he wishes to exhaust by controlling the number of
addresses field.

Impact

Using this vulnerability an attacker can crash the CDP process multiple times. On both NX-OS and
IOS-XR, the device will reboot after a few CDP daemon crashes, meaning that using this vulnerability, an
attacker can cause a complete DoS of the target device.

NX-OS Stack Overflow in the Power Request TLV (CVE-2020-3119)

Following these findings, we further examined the parsing function in the CDP daemon on the latest
NX-OS version (v9.2.3) at the time, in search for any TLV types that might contain similar boundary check
flaws. Eventually we found the Power Request TLV - a CDP TLV frame made for negotiation of
Power-over-Ethernet parameters.

CDPwn – ©2020 ARMIS, INC. – 18 TECHNICAL WHITE PAPER

The Power Request TLV contains a list of requested power specifications. The 16-bit list length is not
validated correctly and used to copy the list to a fixed size buffer on the stack and a fixed offset from an
additional pointer (a1) -- also on the stack:

int length = ntohs(pwr_pkt_2->length);
...
if (length > 0) {

 Current_offset = &pwr_pkt_2->int8;
 counter = 1;
 do {
 // Overflow - temp is a buffer of size 0x40 at the top of the stack frame
 temp[counter - 1] = _byteswap_ulong(*current_offset);
 ...
 // Write, What, Where primitive since a1 is on the stack
 a1->levels[counter] = _byteswap_ulong(*current_offset);
 ++current_offset;
 ++counter;
 } while (counter != length + 1);
}

Decompiled code snippet from the CDP parsing function

An attacker can exploit this vulnerability using aCDP packet with more than 16 power levels:

CDPwn – ©2020 ARMIS, INC. – 19 TECHNICAL WHITE PAPER

Exploitability

The above vulnerability is a stack overflow, and the CDP daemon in which it was found is not using the
stack canaries mitigation. ASLR, however, is in use by the CDP daemon, but the daemon is a 32 bit
process and ASLR is only partially effective. In most cases, ASLR in a 32 bit process in Linux only
randomizes one byte of the address. Moreover, the entire memory map is shifted with the same offset
and the distance between two adjacent ASLR shifts is just 4KB, making the maximum ASLR shift - 1MB
(256 * 4KB).

Any shared object larger than 1MB (and there are a few in use by the CDP daemon), an attacker can
choose addresses within these libraries that will necessarily contain executable code that can be used
for ROP (Return oriented programming) gadgets, in multiple ASLR shifts.

Using the above technique, we were able to develop a relatively reliable exploit of this vulnerability that
is able to gain remote-code-execution within reasonable time.

CDPwn – ©2020 ARMIS, INC. – 20 TECHNICAL WHITE PAPER

For example, In the illustration above, address 0x0F100000 is a valid executable address for all possible
ASLR shifts. Using the above limitation of ASLR in the CDP daemon, an attacker can develop an exploit
that will use a ROP chain that will handle concurrent options for the ASLR shift, and can thus
dramatically limit the effect of the ASLR mitigation.

Impact

As described above, a reliable exploit that reaches code-execution within a reasonable amount of time
can be achieved. Since the CDP daemon is running with root privileges, such an exploit would allow an
attacker full control over targeted switches, which in turn can allow him to hop between VLANs and
causing havoc to the network structure.

IOS XR Format String vulnerability in multiple TLVs (CVE-2020-3118)

In the IOS XR implementation of CDP the above TLVs didn’t contain similar vulnerabilities. However, in
the code flow triggered when certain string-fields are copied from a CDP packet to the in-memory
database of the router’s CDP neighbors, we found a format-string vulnerability:

v5 = (int *)calloc(1, v38);
snprintf((int)(v5 + 7), 0x1E, device_id);
snprintf((int)v5 + 58, 0x28, port_id);
snprintf((int)v5 + 98, 0x20, software_version);

Decompiled code snippet from the parsing flow of CDP packets in IOS-XRv

The three fields above - Device ID, Port ID, and Software Versions, are attacker controlled and can be
used to overwrite an out-of-bounds stack variable, that can lead to remote-code-execution, for example
by using the %n modifier. (https://en.wikipedia.org/wiki/Uncontrolled_format_string)

CDPwn – ©2020 ARMIS, INC. – 21 TECHNICAL WHITE PAPER

https://en.wikipedia.org/wiki/Uncontrolled_format_string

Exploitability

This vulnerability affects a wide-array of IOS XR versions, and substantial underlying OS changes have
occured between these versions. In IOS XR v6.1.3, for example, the underlying OS was based on QNX,
which didn’t support ASLR, making this vulnerability easily exploitable.

In the latest releases of IOS XR, however, the underlying OS is based on Windriver Linux, the CDP
process is 64-bit and ASLR is enabled -- meaning exploitation is not as trivial. Nevertheless, an attacker
could use this vulnerability to accurately corrupt variables on the stack, by abusing the flexible
out-of-bound write primitives enabled by the format-string vulnerability. These can in turn also lead to
code execution.

Impact

Using this vulnerability, an attacker could gain full control over the target router, hop between network
segments and use the router for subsequent attacks.

CDPwn – ©2020 ARMIS, INC. – 22 TECHNICAL WHITE PAPER

CDPwn all the things - CDP vulnerabilities in IP Phones & Cameras

Our initial research focused on the security of network segments, as implemented by network
appliances, and thus the Cisco products we’ve examined were Cisco Nexus switches running NX-OS, and
Cisco routers running IOS XR. Having found a new vulnerability in the CDP implementation in NX-OS, we
set out to see if the same vulnerability affects the CDP code base used by additional Cisco devices. To
our surprise, it seems the CDP code base is separate for each Cisco product line we’ve examined.

Examining the CDP implementation in Cisco VoIP Phones, and Cisco Video Surveillance products (IP
Cameras) led us to discover two RCE zero-day vulnerabilities.

IP Phones Stack Overflow in PortID TLV (CVE-2020-3111)

Cisco VoIP devices use CDP for multiple reasons, one of which is PoE (Power over Ethernet) negotiation -
The VoIP device can request specific PoE parameters and the switch can enable or disable those
parameters and inform the VoIP using CDP. For this reason, CDP is enabled by default in the Cisco VoIP
devices, and can not be easily turned off.

The underlying operating system for Cisco-88xx and 78xx VoIP Phones is Linux and the process running
the cdp daemon is executed with root privileges.

Examining the function that parses incoming CDP packets (cdpRcvParse) in the VoIP’s CDP daemon
(cdpd) led us to discover a stack overflow vulnerability in the parsing of the PortID TLV (0x03). There are
no boundary checks on the length of this TLV and the value is simply copied to a fixed sized buffer on the
stack.

 case 3: # Port ID
 len = ntohs(portid_tlv_len);
 if (len > 3)
 {
 // No check that len is lower than the size of buf (stack variable)
 memcpy(buf, v10 + 4, len - 4);
 ..

CDPwn – ©2020 ARMIS, INC. – 23 TECHNICAL WHITE PAPER

Decompiled code snippet from cdpRcvParse

Exploitability

The above vulnerability is a simple stack-overflow, with attacker controlled data. Stack canaries are not
in use by the CDP daemon, but ASLR is. However, similarly to the CDP daemon used in the NX-OS, ASLR
is only partially effective. Using the same techniques, we were able to develop a relatively reliable
exploit of this vulnerability that is able to gain remote-code-execution. We were also able to craft an
ethernet broadcast packet causing DoS on all vulnerable devices on the same LAN.

Impact

In a network comprised of CDP-capable network switches (most likely, Cisco switches) CDP packets are
terminated by each switch. CDP packets have a designated multicast address to which they are sent
(01:00:0C:CC:CC:CC), and each CDP-capable switch captures packets sent to this MAC address, and does
not forward them throughout the network. Thus, in a CDP-capable network, an attacker can only trigger
the above vulnerability by sending CDP packets when it is directly connected to a target device.

However, an additional flaw was discovered in the parsing mechanism of CDP packets in the VoIP
phones, enhancing the impact an attacker can achieve using the vulnerability. The CDP implementation
in the VoIP phones doesn’t validate the destination MAC address of incoming CDP packets, and accepts
CDP packets containing unicast/broadcast destination address as well. Any CDP packet that is sent to a
switch that is destined to the designated CDP multicast MAC address, will be forwarded by the switch,
and not terminated by it. Due to this discrepancy, an attacker can trigger the vulnerability described
above by a unicast packet sent directly to target device, or by a broadcast packet sent to all devices in
the LAN -- without needing to send the packet directly from the switch to which an VoIP phones is
connected to.

To understand this additional bug, we examined the flow of an incoming packet:

Code flow of an incoming CDP packet on the Cisco 88xx and 78xx IP Phones

CDPwn – ©2020 ARMIS, INC. – 24 TECHNICAL WHITE PAPER

The majority of the above flow simply sets up a RAW socket to capture the CDP packets, while the
validation of the packet occurs in the function cdpRcvPktValidation:

if ((packet->llc.dsap == 0xAA) &&
 (packet->llc.ssap == 0xAA) &&
 (!memcmp((char *)&packet->llc.control_field + 1, &s2, 3u)) &&
 (LOBYTE(packet->llc.pid) == 32) &&
 (!HIBYTE(packet->llc.pid))) {

 if (!memcmp(packet->eth.srca, myMAC, 6u)) {
 syslog(4, "pktvalid(): pkt dropped: my mac address: \n");
 } else if ((cdp->version == 1) || (cdp->version == 2)) {
 if (cdpChksum((uint16_t *)cdp, payload_size - 22)) {
 syslog(4, "pktvalid(): pkt dropped: checksum error \n");
 }
 ...
 }
}

Decompiled code snippet from the function cdpRcvPktValidation

The only validation of the ethernet header fields is of the source MAC address, which is validated to be
any address that isn’t the address of the device itself. The destination address isn’t validated at all! This
means that packets sent to the VoIP with a unicast or broadcast address will also be processed.

As described above, this flaw increases the impact of this vulnerability, since CDP packets sent with
unicast\broadcast destination addresses are not processed by other network devices and will be
forwarded in the LAN without being terminated by CDP-capable network appliances. This allows for 2
new attack scenarios:

1. An attacker in the same LAN, without a direct connection to the target device, can attack it via a
unicast packet.

2. An attacker can send a broadcast message containing a malicious packet can cause a DoS on all
vulnerable devices in the LAN, and potentially reach code execution as well.

IP Cameras Heap Overflow in DeviceID TLV (CVE-2020-3110)

CDPwn – ©2020 ARMIS, INC. – 25 TECHNICAL WHITE PAPER

We were surprised to see that Cisco also manufactures IP cameras and that those cameras use yet
another code base for CDP processing with it’s own brand of CDP vulnerability:

 case 1u: // DEVICE ID
 uint16 value_len = (len - 4) & 0xFFFF;
 uint8 alloc_len = (len + 1) & 0xFF;

// Cast to uint8
dst_buf = malloc(alloc_len);
if (dst_buf)
{
 memset(dst_buf, 0, alloc_len);
 // Cast to uint16 - heap overflow
 memcpy(dst_buf, tlv + 4, value_len);

 // Place a NULL terminator at the end of the buffer.
 dst_buf[value_len] = 0;
 ..

 goto LABEL_12;

Decompiled code snippet from the function cdpd_process_packet

The above code simply allocates a buffer for the Port ID parsed from the incoming packet, and copies it’s
value from the incoming TLV to the allocated buffer. However, a simple mistake here means a trivial
heap-overflow can occur. The size of the allocation dst_buf is calculated as len + 1, to allow the addition
of a null terminator at the end of the Port ID string. Unfortunately, this variable (alloc_len) is defined as
an uint8, while the size calculated as the length of the TLV’s payload (value_len) is defined as an uint16.
The length field in the TLV is 16-bit, and is completely attacker-controlled. By sending a CDP packet
containing a PortID TLV (0x01) of size larger than 0xff an attacker can overflow a heap allocated buffer
with attacker-controlled data.

Exploitability

The above vulnerability is a heap-overflow with attacker controlled data that can lead to
remote-code-execution. An attacker sending maliciously crafted CDP packets to a target device can use
the various allocations that occur while handling CDP packets to shape the heap prior to triggering the
overflow. Moreover, multiple overflow packets can be sent by the attacker with varying overflow
lengths. Lastly, the Cisco IP Camera’s CDP daemon is a non-position independent process, that is always
mapped at a constant address -- meaning ASLR is not in use in this process code section.

Combining the above traits, an experienced attacker can develop a statistical, yet reliable working
exploit that may reach RCE.

Impact

Unlike the example of the VoIP Phones, the IP Cameras do validate the ethernet destination address in
incoming CDP packets, and only process those that are sent to the dedicated multicast address.

As stated above, in a network comprised of CDP-capable network switches (most likely, Cisco switches)
CDP packets are terminated by each switch. In such a network, an attacker can thus only trigger the

CDPwn – ©2020 ARMIS, INC. – 26 TECHNICAL WHITE PAPER

above vulnerability by sending CDP packets when it is directly connected to a target IP camera, which
would mean running his attack from the camera’s access switch. In a network that isn’t comprised of
Cisco switches, CDP packets aren’t terminated at each switch, and the attacker can then send the
multicast CDP packet to any IP camera in the LAN.

Despite the above, there are a few edge cases when seemingly valid multicast CDP packets can still
traverse through CDP-capable switches, due to a small discrepancy in how ethernet header is parsed by
the IP cameras (that run on Linux) vs how it is parsed by certain network switches (that might be using a
non-Linux TCP/IP stack).

In order to capture the CDP packets, the CDP daemon running in the IP camera opens a raw socket, such
as this:

 cdp_socket = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_802_2));

The above raw socket will pick up any ethernet packet that is of type ETH_P_802_2. Ethernet 802.2 is a
logical link control layer (LLC), that expands the basic ethernet header:

The 16-bit EtherType field in the Ethernet header can actually also function as ther Length field of the
Ethernet frame:

Values of 1500 and below mean that it is used to indicate the size of the payload in octets, while values
of 1536 and above indicate that it is used as an EtherType, to indicate which protocol is encapsulated
in the payload of the frame.

Description of the EtherType field, from Wikipedia

When the EtherType is thus less than 1500 bytes, it is treated as the size of the Ethernet payload, which
also indicates that an LLC frame will exist above the Ethernet frame. The Linux Kernel will thus capture
ETH_P_802_2 frames (LLC frames) according to these conditions:

#define ETH_P_802_3_MIN 0x0600 // (1500)

static inline bool eth_proto_is_802_3(__be16 proto)
{
 ...
 /* cast both to u16 and compare since LSB can be ignored */
 return (__force u16)proto >= (__force u16)htons(ETH_P_802_3_MIN);
}

So according to Linux Kernel, any EtherType greater than 1500 will be considered as a LLC packet, while

CDPwn – ©2020 ARMIS, INC. – 27 TECHNICAL WHITE PAPER

https://en.wikipedia.org/wiki/IEEE_802.2
https://en.wikipedia.org/wiki/EtherType

the Ethernet RFC is actually defined a slightly different:

...values of 1500 and below for this field indicate that the field is used as the size of the payload of the
Ethernet frame while values of 1536 and above indicate that the field is used to represent an
EtherType. The interpretation of values 1501–1535, inclusive, is undefined

Description of the EtherType field, from Wikipedia

So when an Ethernet packet containing EtherType field of 1501-1535 is received by the Linux Kernel, the
EtherType will be interpreted as the length of the packet, and assumed to be a valid 802.2 LLC packet,
while other network appliances might treat the EtherType as a protocol type, and not assume it contains
LLC frame at all.

For example, the packet capturing tool Wireshark does not know how to parse this type a crafted packet
containing this type of EtherType field, and simply specifies it contains an invalid EtherType:

If a network appliance where to treat this field as a valid protocol type, it might than simply forward the
packet throughout the network, since CDP packets that are usually terminated by CDP-capable network
appliances have to include a valid LLC frame within them.

Several tests we’ve performed showed that Nexus switches, for example, simply drop these types of
packets. However, we have not done a thorough tests on all CDP-capable network appliances, and the
exact interpretation they have on the EtherType field will determine if this subtle attack can be used to
send a malicously crafted CDP packet to affected Cisco IP Cameras, even without needing to be directly
connected to them.

CDPwn – ©2020 ARMIS, INC. – 28 TECHNICAL WHITE PAPER

https://en.wikipedia.org/wiki/EtherType

Conclusion

Many of the vulnerabilities described in this research are simple overflows, that are becoming less
frequent in secure software. However, it seems that in both discovery protocols supported by default on
enterprise-grade network appliances (LLDP and CDP), these types of trivial flaws were found extensively.

When simple flaws are discovered, they can ultimately be exploited to reach remote-code-execution,
and to carry out attacks on vulnerable devices. The risk to the network appliances that serve as the
security guard, preventing compromised devices from crossing over network segments, is great.

Moreover, attacks that leverage CDP vulnerabilities against enterprise-grade IP Phones and cameras can
also be substantial. In the case of IP Phones, this research demonstrated one of the most severe
outcomes for an RCE vulnerability -- the ability for an attacker to send an unauthenticated broadcast
packet that would traverse through the LAN and affect any affected IP Phone it reaches. Gaining code
execution en mass in this scenario is not a trivial task, but the possibility of it is real.

In addition to the discovered vulnerabilities, it seems the attack surface of Layer 2 protocols, used by
network appliances is significant and largely unexplored. These protocols are in use by a wide array of
devices, and are enabled by default in the majority of them.

We hope this research will shed light on this attack surface, and the risks that it entails.

CDPwn – ©2020 ARMIS, INC. – 29 TECHNICAL WHITE PAPER

20200205-1

