Apport Kernel Crashdump File Access Vulnerabilities http://www.halfdog.net/Security/2015/ApportKernelCrashdump...

www.halfdog.net / Security / 2015 / ApportKernelCrashdumpFile Access Vulnerabilities / Share via f g+
Introduction

Problem description: On Ubuntu Vivid Linux distribution apport is used for automated sending of client program
crash dumps but also of kernel crash dumps. For kernel crashes, upstart or SysV init invokes the program /usr/share
lapport/kernel_crashdump at boot to prepare crash dump files for sending. This action is performed with root
privileges. As the crash dump directory /var/crash/ is world writable and kernel_crashdump performs file access in
unsafe manner, any local user may trigger a denial of service or escalate to root privileges. If symlink and hardlink
protection is enabled (which should be the default for any modern system), only denial of service is possible.

Problematic syscall in kernel_crashdump is:

open("/var/crash/linux-image-3.19.0-18-generic.0.crash", O_WRONLY|O_CREAT|O_TRUNC|O_LARGEFILE|O_CLOEXEC, 0666) = 30

open("/var/crash/vmcore.log", O_RDONLY|O_LARGEFILE|O_CLOEXEC) = 31

Thus the output file is opened unconditionally and without O_EXCL or O_NOFOLLOW. Also opening of input file
does not care about links.

Methods

Denial of service: It is trivial to make the input and output file the same by just placing a hardlink. This is allowed even
with hardlink protection enabled as the unprivileged user doing that will have write permissions for the rogue file and
the new hardlink pointing to it. On reboot kernel_crashdump will include its own output over and over again in the
crashdump till the disk is completely filled. This can be done using PrepareDoSBoot.py.

Privilege escalation: With symlink or hardlink protection turned of, PrepareMagicBoot.py can be used to escalate
privileges. While the link attack is really trivial (see code), the method to gain full code control is quite nice: The
problem is, that kernel_crashdump creates following report format:

ProblemType: KernelCrash
Architecture: i386

Date: Fri Sep 4 20:36:21 2015
DistroRelease: Ubuntu 15.04
Package: linux-image-3.19.0-26-generic 3.19.0-26.28
Uname: Linux 3.19.0-26-generic i686
VmCore: base64
H4sICAAAAAAC/1ZtQ29yZQA=

AwA=

VmCoreLog: base64
H4sICAAAAAAC/1ZtQ29yZUXVZIWA=

AwA=

The structure contains some predefined fields and compressed base64 encoded log data and core. Overwriting
Jetc/shadow (line structure violated) or /etc/ld.so.conf.d/libc.conf (requires absolute path) with that content would just
cause DoS, so not so interesting. Overwriting executables does not help neither as on valid execution file header can be
produced. But there are scripts, e.g. /etc/rc.local, that execute text without any need for a header in their context, .e.g
/liblinit/vars.sh. Overwriting those would also just result in errors, because none of the included attribute names is user
controllabe to make it refer to a path the unprivileged local user could control. So the last chance is to make the base64
encoded, compressed log or core file data to point to a suitable location.

Generation of such data is not as simple as it seems. To avoid having additional requirements on available directories on
that machine, only existance of /var/crash should be needed, no attempts should be made to construct data for /home or
Ivarlwwwl.... As /etc/rc.local is executed with current working directory at /, also relative path would be sufficient.

Due to deflate compression method used before encoding, there are only some combinations of lower bits in the first
byte allowed. See section details of block format in REC1951. As a consequence, it is not possible to create compressed
data that would start with var/crash (last chunk in dynamic encoding, but literal/distance/code length codes do not form
a valid combination), /var/crash (non-last chunk in reserved encoding) of //var/crash (last chunk in reserved encoding).
Hence no compressed data block will start with suitable values, but code analysis reveals another chance:

kernel_crashdump will split long dumps into blocks of 1MB size, comress them and write the base64 encoded output to
separate lines. This is especially interesting as deflate operates on bit basis, compression output is in bytes. Hence when
one block is compressed, some bits remain in the output buffer and are combined with bits from the next block. Thus it

might be possible to find two adjacent blocks where the bits at this position may form the desired sequence of bytes.

As detail analysis of the deflate algorithm to carefully craft a suitable first block was too much effort, a program to
guess appropriate blocks was used (CreateVmcore.py). Invoking it to target var/crash sequence and alike did not yield

any results.

Also strings with additional slashes prepeneded or within path could not be created. Luckily, one alternative path was

1of2 9/28/15,9:51 AM

Apport Kernel Crashdump File Access Vulnerabilities http://www.halfdog.net/Security/2015/ApportKernelCrashdump...

found, that should exist on all systems and can be the output of the compression and encoding transformation: proc//1
[root/var/crash/.

$./CreateVmcore.py proc//l/root/var/crash/A

58045-Tail ec-7Nb5XxsEvuh9 (45983) last 880 b6366ec99f8f (tjzZuyz+PHP65)
Good result: proc//1l/root/var/crash/AkrxiSugWCRVICZOGL. ..8TAQ==

Just replacing some bytes with 0 and modifying the tail to be shorter not to exceed the maximum path length. For
exploitation folling steps were performed:

o Copy /lib/init/vars.sh to /var/crash

o Prepare vmcore and symlink to overwrite /lib/init/vars.sh with crash dump report
o Wait for reboot and invocation of /etc/rc.local

e Restore /lib/init/vars.sh to be back to normal

PrepareMagicBoot.py performs all the steps to prepare the system for reboot. It also includes the vmcore data to be
compressed by the kernel_crashdump.

$./PrepareMagicBoot.py
nobody@localhost:/var/crash$ 1ls -al

total 1068
drwxrwxrwt 2 root root 4096 Sep 5 09:27 .
drwxr-xr-x 13 root root 4096 May 12 11:23 ..
-rwxr-xr-x 1 nobody nogroup 99 Sep 5 09:27 AuttsIhCkBCKV1JSVRKkcgRsEooBsAAHSEdIOAABAA
lrwxrwxrwx 1 nobody nogroup 17 Sep 5 09:27 linux-image-3.19.0-26-generic.0.crash -> /lib/init/vars.sh
-rwxr-xr-x 1 nobody nogroup 19883 Sep 5 08:14 PrepareMagicBoot.py
-rw-r--r-- 1 nobody nogroup 1212 Nov 10 2014 vars.sh
-rw-r--r-- 1 nobody nogroup 1048576 Sep 5 09:27 vmcore
-rw-r--r-- 1 nobody nogroup 0 Sep 5 09:27 vmcore.log
. .
Results, Discussion

Not a big issue, as symlink protection should be standard nowadays. But the crafting of the core file was fun, so let
others enjoy also.

Timeline

* 20150905: Report at Ubuntu Launchpad: 1492570

e 20150917: CVE assigned: CVE-2015-1338

o 20150924: Updates released by Ubuntu, see USN-2744-1

e 20150924: Full disclosure post of this article, see 2015/Sep/101

Material, References

o Tools: PrepareDoSBoot.py, PrepareMagicBoot.py, CreateVmcore.py
o Deflate RFC: REC 1951

o Ubuntu Launchpad Bug Report: 1492570

e Mitre CVE record: CVE-2015-1338

Last modified 20150927
Contact e-mail: me (%) halfdog.net

20f2 9/28/15,9:51 AM

